{"title":"采用反向设计方法的多模光子阻断技术","authors":"Yan-Hui Zhou, Tong Liu, Xing-Yuan Zhang, Qi-Cheng Wu, Dong-Xu Chen, Zhi-Cheng Shi, Chui-Ping Yang","doi":"10.1002/qute.202400089","DOIUrl":null,"url":null,"abstract":"<p>Recently, a groundbreaking advancement known as multimode photon blockade (MPB) is proposed by S. Chakram et al. [Nature. Phys. 18, 879-884 (2022)], showcasing its ability to generate multimode W states. Inspired by their work, in this paper, an interesting method is proposed to investigate MPB by engineering the eigenstates of the system Hamiltonian, which is defined as the reverse design method. It is demonstrated that an entangled state is created with a certain probability by sharing a single photon between two coupled Kerr-nonlinear cavities. This entangled state in the two-coupled cavities blocks the creation of the subsequent photons. The system is in a superposition of only the entangled state and the vacuum state. And the photon blockade (PB) exists in two cavities simultaneously. The reversed design method can also be utilized to study MPB in three coupled cavities with Kerr nonlinearities by creating a three-qubit W state.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimode Photon Blockade with a Reversed Design Method\",\"authors\":\"Yan-Hui Zhou, Tong Liu, Xing-Yuan Zhang, Qi-Cheng Wu, Dong-Xu Chen, Zhi-Cheng Shi, Chui-Ping Yang\",\"doi\":\"10.1002/qute.202400089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recently, a groundbreaking advancement known as multimode photon blockade (MPB) is proposed by S. Chakram et al. [Nature. Phys. 18, 879-884 (2022)], showcasing its ability to generate multimode W states. Inspired by their work, in this paper, an interesting method is proposed to investigate MPB by engineering the eigenstates of the system Hamiltonian, which is defined as the reverse design method. It is demonstrated that an entangled state is created with a certain probability by sharing a single photon between two coupled Kerr-nonlinear cavities. This entangled state in the two-coupled cavities blocks the creation of the subsequent photons. The system is in a superposition of only the entangled state and the vacuum state. And the photon blockade (PB) exists in two cavities simultaneously. The reversed design method can also be utilized to study MPB in three coupled cavities with Kerr nonlinearities by creating a three-qubit W state.</p>\",\"PeriodicalId\":72073,\"journal\":{\"name\":\"Advanced quantum technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced quantum technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
摘要
最近,S. Chakram 等人提出了一种被称为多模光子封锁(MPB)的突破性进展[Nature. Phys. 18, 879-884 (2022)],展示了其生成多模 W 状态的能力。受他们工作的启发,本文提出了一种有趣的方法,即逆向设计法,通过对系统哈密顿的特征状态进行工程设计来研究 MPB。研究表明,通过在两个耦合的克尔非线性腔之间共享一个单光子,会以一定的概率产生一个纠缠态。两个耦合空腔中的这种纠缠态会阻止后续光子的产生。系统只处于纠缠态和真空态的叠加状态。光子封锁(PB)同时存在于两个空腔中。这种反向设计方法也可用于研究具有克尔非线性的三耦合空腔中的 MPB,方法是创建一个三量子比特 W 状态。
Multimode Photon Blockade with a Reversed Design Method
Recently, a groundbreaking advancement known as multimode photon blockade (MPB) is proposed by S. Chakram et al. [Nature. Phys. 18, 879-884 (2022)], showcasing its ability to generate multimode W states. Inspired by their work, in this paper, an interesting method is proposed to investigate MPB by engineering the eigenstates of the system Hamiltonian, which is defined as the reverse design method. It is demonstrated that an entangled state is created with a certain probability by sharing a single photon between two coupled Kerr-nonlinear cavities. This entangled state in the two-coupled cavities blocks the creation of the subsequent photons. The system is in a superposition of only the entangled state and the vacuum state. And the photon blockade (PB) exists in two cavities simultaneously. The reversed design method can also be utilized to study MPB in three coupled cavities with Kerr nonlinearities by creating a three-qubit W state.