{"title":"N-乙酰半胱氨酸联合胰岛素疗法可通过内质网途径减轻 1 型糖尿病诱发的心肌损伤","authors":"Haitong Wu, Haihua Huo, Haoye Li, Hongyan Zhang, Xinrun Li, Qingyue Han, Jianzhao Liao, Zhaoxin Tang, Jianying Guo","doi":"10.1016/j.tice.2024.102515","DOIUrl":null,"url":null,"abstract":"<div><p>With the development of Type 1 diabetes mellitus (T1DM), various complications can be caused. Hyperglycemia affects the microenvironment of cardiomyocytes, changes endoplasmic reticulum homeostasis, triggers unfolding protein response and eventually promotes myocardial apoptosis. However, insulin therapy alone cannot effectively combat the complications caused by T1DM. Forty adult beagles were randomly divided into five groups: control group, diabetes mellitus group, insulin group, insulin combined with NAC group, and NAC group. 24-hour blood glucose, 120-day blood glucose, 120-day body weight, and serum FMN content were observed, furthermore, hematoxylin-eosin staining, Periodic acid Schiff reagent staining, and Sirius red staining of the myocardium were evaluated. The protein expressions of GRP78, ATF6, IRE1, PERK, JNK, CHOP, caspase 3, Bcl2, and Bax were detected. Results of the pathological section of myocardial tissue indicated that insulin combined with NAC therapy could improve myocardial pathological injury and glycogen deposition. Additionally, insulin combined with NAC therapy down-regulates the expression of GRP78, ATF6, IRE1, PERK, JNK, CHOP, caspase3, and Bax. These findings suggest that NAC has a phylactic effect on myocardial injury in beagles with T1DM, and the mechanism may be related to the improvement of endoplasmic reticulum stress-induced apoptosis.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"N-acetylcysteine combined with insulin therapy can reduce myocardial injury induced by type 1 diabetes through the endoplasmic reticulum pathway\",\"authors\":\"Haitong Wu, Haihua Huo, Haoye Li, Hongyan Zhang, Xinrun Li, Qingyue Han, Jianzhao Liao, Zhaoxin Tang, Jianying Guo\",\"doi\":\"10.1016/j.tice.2024.102515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the development of Type 1 diabetes mellitus (T1DM), various complications can be caused. Hyperglycemia affects the microenvironment of cardiomyocytes, changes endoplasmic reticulum homeostasis, triggers unfolding protein response and eventually promotes myocardial apoptosis. However, insulin therapy alone cannot effectively combat the complications caused by T1DM. Forty adult beagles were randomly divided into five groups: control group, diabetes mellitus group, insulin group, insulin combined with NAC group, and NAC group. 24-hour blood glucose, 120-day blood glucose, 120-day body weight, and serum FMN content were observed, furthermore, hematoxylin-eosin staining, Periodic acid Schiff reagent staining, and Sirius red staining of the myocardium were evaluated. The protein expressions of GRP78, ATF6, IRE1, PERK, JNK, CHOP, caspase 3, Bcl2, and Bax were detected. Results of the pathological section of myocardial tissue indicated that insulin combined with NAC therapy could improve myocardial pathological injury and glycogen deposition. Additionally, insulin combined with NAC therapy down-regulates the expression of GRP78, ATF6, IRE1, PERK, JNK, CHOP, caspase3, and Bax. These findings suggest that NAC has a phylactic effect on myocardial injury in beagles with T1DM, and the mechanism may be related to the improvement of endoplasmic reticulum stress-induced apoptosis.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040816624002167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040816624002167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
N-acetylcysteine combined with insulin therapy can reduce myocardial injury induced by type 1 diabetes through the endoplasmic reticulum pathway
With the development of Type 1 diabetes mellitus (T1DM), various complications can be caused. Hyperglycemia affects the microenvironment of cardiomyocytes, changes endoplasmic reticulum homeostasis, triggers unfolding protein response and eventually promotes myocardial apoptosis. However, insulin therapy alone cannot effectively combat the complications caused by T1DM. Forty adult beagles were randomly divided into five groups: control group, diabetes mellitus group, insulin group, insulin combined with NAC group, and NAC group. 24-hour blood glucose, 120-day blood glucose, 120-day body weight, and serum FMN content were observed, furthermore, hematoxylin-eosin staining, Periodic acid Schiff reagent staining, and Sirius red staining of the myocardium were evaluated. The protein expressions of GRP78, ATF6, IRE1, PERK, JNK, CHOP, caspase 3, Bcl2, and Bax were detected. Results of the pathological section of myocardial tissue indicated that insulin combined with NAC therapy could improve myocardial pathological injury and glycogen deposition. Additionally, insulin combined with NAC therapy down-regulates the expression of GRP78, ATF6, IRE1, PERK, JNK, CHOP, caspase3, and Bax. These findings suggest that NAC has a phylactic effect on myocardial injury in beagles with T1DM, and the mechanism may be related to the improvement of endoplasmic reticulum stress-induced apoptosis.