Dingrong Wu , Jing Gao , Peijuan Wang , Jianying Yang , Yuping Ma , Zhiguo Huo , Qiang Yu
{"title":"在作物物候模型中将遗产效应与温度响应结合起来的必要性","authors":"Dingrong Wu , Jing Gao , Peijuan Wang , Jianying Yang , Yuping Ma , Zhiguo Huo , Qiang Yu","doi":"10.1016/j.gloplacha.2024.104545","DOIUrl":null,"url":null,"abstract":"<div><p>Global climate change has changed vegetation phenology substantially around the world. However, the necessity of coupling legacy effects with temperature responses in phenological models remains unclear. The objective of this study was to demonstrate that legacy effects [based on day of year (DOY) of phenology events] have substantial positive impacts on crop phenology. Data from 1883 crop×site combinations across Germany and China were analyzed. DOY was found to be a temperature-independent factor for both vegetative (VGP) and reproductive growth periods (RGP) (based on variance inflation factor values). Partial correlation analysis suggested that DOY explained almost the same variability in date of phenology events as temperature. Akaike information criterion showed the cost-effectiveness of coupling DOY with temperature in 71.2% and 59.1% of sites in VGP and RGP, respectively. A model that coupled a linear legacy effect and a temperature response mechanism (LETM) improved fitting efficiency by an average of 57%. LETM was observed to outperform the well-calibrated WOFOST and WE models in VGP and RGP for all crops. Averaged over all crops, root mean square errors for WOFOST, WE, and LETM were 4.0, 3.9, and 3.7 d in VGP, respectively, and are 5.3, 4.6, and 4.0 d in RGP, respectively. Our results verified the necessity of coupling the legacy effect with temperature responses in phenology models. Given that the results were consistent for all of the crops investigated, we believe that our conclusions can apply to other field crops. Results of this study expand the knowledge of crop phenology responses to environment, and are helpful for accurately predicting crop growth and development responses under future global climate change.</p></div>","PeriodicalId":55089,"journal":{"name":"Global and Planetary Change","volume":"240 ","pages":"Article 104545"},"PeriodicalIF":4.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The necessity of coupling the legacy effect with temperature response in crop phenology models\",\"authors\":\"Dingrong Wu , Jing Gao , Peijuan Wang , Jianying Yang , Yuping Ma , Zhiguo Huo , Qiang Yu\",\"doi\":\"10.1016/j.gloplacha.2024.104545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Global climate change has changed vegetation phenology substantially around the world. However, the necessity of coupling legacy effects with temperature responses in phenological models remains unclear. The objective of this study was to demonstrate that legacy effects [based on day of year (DOY) of phenology events] have substantial positive impacts on crop phenology. Data from 1883 crop×site combinations across Germany and China were analyzed. DOY was found to be a temperature-independent factor for both vegetative (VGP) and reproductive growth periods (RGP) (based on variance inflation factor values). Partial correlation analysis suggested that DOY explained almost the same variability in date of phenology events as temperature. Akaike information criterion showed the cost-effectiveness of coupling DOY with temperature in 71.2% and 59.1% of sites in VGP and RGP, respectively. A model that coupled a linear legacy effect and a temperature response mechanism (LETM) improved fitting efficiency by an average of 57%. LETM was observed to outperform the well-calibrated WOFOST and WE models in VGP and RGP for all crops. Averaged over all crops, root mean square errors for WOFOST, WE, and LETM were 4.0, 3.9, and 3.7 d in VGP, respectively, and are 5.3, 4.6, and 4.0 d in RGP, respectively. Our results verified the necessity of coupling the legacy effect with temperature responses in phenology models. Given that the results were consistent for all of the crops investigated, we believe that our conclusions can apply to other field crops. Results of this study expand the knowledge of crop phenology responses to environment, and are helpful for accurately predicting crop growth and development responses under future global climate change.</p></div>\",\"PeriodicalId\":55089,\"journal\":{\"name\":\"Global and Planetary Change\",\"volume\":\"240 \",\"pages\":\"Article 104545\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global and Planetary Change\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921818124001929\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global and Planetary Change","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921818124001929","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
The necessity of coupling the legacy effect with temperature response in crop phenology models
Global climate change has changed vegetation phenology substantially around the world. However, the necessity of coupling legacy effects with temperature responses in phenological models remains unclear. The objective of this study was to demonstrate that legacy effects [based on day of year (DOY) of phenology events] have substantial positive impacts on crop phenology. Data from 1883 crop×site combinations across Germany and China were analyzed. DOY was found to be a temperature-independent factor for both vegetative (VGP) and reproductive growth periods (RGP) (based on variance inflation factor values). Partial correlation analysis suggested that DOY explained almost the same variability in date of phenology events as temperature. Akaike information criterion showed the cost-effectiveness of coupling DOY with temperature in 71.2% and 59.1% of sites in VGP and RGP, respectively. A model that coupled a linear legacy effect and a temperature response mechanism (LETM) improved fitting efficiency by an average of 57%. LETM was observed to outperform the well-calibrated WOFOST and WE models in VGP and RGP for all crops. Averaged over all crops, root mean square errors for WOFOST, WE, and LETM were 4.0, 3.9, and 3.7 d in VGP, respectively, and are 5.3, 4.6, and 4.0 d in RGP, respectively. Our results verified the necessity of coupling the legacy effect with temperature responses in phenology models. Given that the results were consistent for all of the crops investigated, we believe that our conclusions can apply to other field crops. Results of this study expand the knowledge of crop phenology responses to environment, and are helpful for accurately predicting crop growth and development responses under future global climate change.
期刊介绍:
The objective of the journal Global and Planetary Change is to provide a multi-disciplinary overview of the processes taking place in the Earth System and involved in planetary change over time. The journal focuses on records of the past and current state of the earth system, and future scenarios , and their link to global environmental change. Regional or process-oriented studies are welcome if they discuss global implications. Topics include, but are not limited to, changes in the dynamics and composition of the atmosphere, oceans and cryosphere, as well as climate change, sea level variation, observations/modelling of Earth processes from deep to (near-)surface and their coupling, global ecology, biogeography and the resilience/thresholds in ecosystems.
Key criteria for the consideration of manuscripts are (a) the relevance for the global scientific community and/or (b) the wider implications for global scale problems, preferably combined with (c) having a significance beyond a single discipline. A clear focus on key processes associated with planetary scale change is strongly encouraged.
Manuscripts can be submitted as either research contributions or as a review article. Every effort should be made towards the presentation of research outcomes in an understandable way for a broad readership.