{"title":"CP5 上复杂 3 级向量束的分类","authors":"Morgan Opie","doi":"10.1016/j.aim.2024.109878","DOIUrl":null,"url":null,"abstract":"<div><p>Given integers <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>, there is a complex rank 3 topological bundle on <span><math><mi>C</mi><msup><mrow><mi>P</mi></mrow><mrow><mn>5</mn></mrow></msup></math></span> with <em>i</em>-th Chern class equal to <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> if and only if <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> satisfy the Schwarzenberger condition. Provided that the Schwarzenberger condition is satisfied, we prove that the number of isomorphism classes of rank 3 bundles <em>V</em> on <span><math><mi>C</mi><msup><mrow><mi>P</mi></mrow><mrow><mn>5</mn></mrow></msup></math></span> with <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is equal to 3 if <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are both divisible by 3 and equal to 1 otherwise.</p><p>This shows that Chern classes are incomplete invariants of topological rank 3 bundles on <span><math><mi>C</mi><msup><mrow><mi>P</mi></mrow><mrow><mn>5</mn></mrow></msup></math></span>. To address this problem, we produce a universal class in the <span><math><mrow><mi>tm</mi><msub><mrow><mi>f</mi></mrow><mrow><mi>(</mi><mspace></mspace><mn>3</mn><mi>)</mi></mrow></msub></mrow></math></span>-cohomology of a Thom spectrum related to <span><math><mi>B</mi><mi>U</mi><mspace></mspace><mo>(</mo><mn>3</mn><mo>)</mo></math></span>, where <span><math><mrow><mi>tm</mi><msub><mrow><mi>f</mi></mrow><mrow><mi>(</mi><mspace></mspace><mn>3</mn><mi>)</mi></mrow></msub></mrow></math></span> denotes topological modular forms localized at 3. From this class and orientation data, we construct a <span><math><mi>Z</mi><mo>/</mo><mn>3</mn></math></span>-valued invariant of the bundles of interest and prove that our invariant separates distinct bundles with the same Chern classes.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0001870824003931/pdfft?md5=bab684e3d435c50eb306af6f6b36ae0a&pid=1-s2.0-S0001870824003931-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A classification of complex rank 3 vector bundles on CP5\",\"authors\":\"Morgan Opie\",\"doi\":\"10.1016/j.aim.2024.109878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given integers <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>, there is a complex rank 3 topological bundle on <span><math><mi>C</mi><msup><mrow><mi>P</mi></mrow><mrow><mn>5</mn></mrow></msup></math></span> with <em>i</em>-th Chern class equal to <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> if and only if <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> satisfy the Schwarzenberger condition. Provided that the Schwarzenberger condition is satisfied, we prove that the number of isomorphism classes of rank 3 bundles <em>V</em> on <span><math><mi>C</mi><msup><mrow><mi>P</mi></mrow><mrow><mn>5</mn></mrow></msup></math></span> with <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is equal to 3 if <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are both divisible by 3 and equal to 1 otherwise.</p><p>This shows that Chern classes are incomplete invariants of topological rank 3 bundles on <span><math><mi>C</mi><msup><mrow><mi>P</mi></mrow><mrow><mn>5</mn></mrow></msup></math></span>. To address this problem, we produce a universal class in the <span><math><mrow><mi>tm</mi><msub><mrow><mi>f</mi></mrow><mrow><mi>(</mi><mspace></mspace><mn>3</mn><mi>)</mi></mrow></msub></mrow></math></span>-cohomology of a Thom spectrum related to <span><math><mi>B</mi><mi>U</mi><mspace></mspace><mo>(</mo><mn>3</mn><mo>)</mo></math></span>, where <span><math><mrow><mi>tm</mi><msub><mrow><mi>f</mi></mrow><mrow><mi>(</mi><mspace></mspace><mn>3</mn><mi>)</mi></mrow></msub></mrow></math></span> denotes topological modular forms localized at 3. From this class and orientation data, we construct a <span><math><mi>Z</mi><mo>/</mo><mn>3</mn></math></span>-valued invariant of the bundles of interest and prove that our invariant separates distinct bundles with the same Chern classes.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0001870824003931/pdfft?md5=bab684e3d435c50eb306af6f6b36ae0a&pid=1-s2.0-S0001870824003931-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824003931\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824003931","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A classification of complex rank 3 vector bundles on CP5
Given integers , there is a complex rank 3 topological bundle on with i-th Chern class equal to if and only if satisfy the Schwarzenberger condition. Provided that the Schwarzenberger condition is satisfied, we prove that the number of isomorphism classes of rank 3 bundles V on with is equal to 3 if and are both divisible by 3 and equal to 1 otherwise.
This shows that Chern classes are incomplete invariants of topological rank 3 bundles on . To address this problem, we produce a universal class in the -cohomology of a Thom spectrum related to , where denotes topological modular forms localized at 3. From this class and orientation data, we construct a -valued invariant of the bundles of interest and prove that our invariant separates distinct bundles with the same Chern classes.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.