基于上转换发光技术的微型温度传感器,用于实时监测 GPU 温度

IF 2.6 3区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Zhongli Xue , Mingyue Xie , Xiaoyuan Li , Dianchang Song , Tonglei Cheng , Fang Wang
{"title":"基于上转换发光技术的微型温度传感器,用于实时监测 GPU 温度","authors":"Zhongli Xue ,&nbsp;Mingyue Xie ,&nbsp;Xiaoyuan Li ,&nbsp;Dianchang Song ,&nbsp;Tonglei Cheng ,&nbsp;Fang Wang","doi":"10.1016/j.yofte.2024.103944","DOIUrl":null,"url":null,"abstract":"<div><p>This paper introduces a miniaturized optical fiber temperature sensor based on Fluorescence Intensity Ratio (FIR) technology for real-time monitoring of graphics processing unit (GPU) temperature. Utilizing a femtosecond micromachining system, miniature rectangular holes are etched on a standard multimode fiber. These holes are then filled with a mixture of Er<sup>3+</sup>/Yb<sup>3+</sup> co-doped TeO<sub>2</sub>-Na<sub>2</sub>CO<sub>3</sub>-ZnO powder and polydimethylsiloxane (PDMS) through capillary action, forming a sandwich structure. When illuminated by a 980 nm light source, upconversion (UC) fluorescence is generated, and a mathematical model correlating the fluorescence intensity ratio of two adjacent energy levels with temperature is established. The fundamental temperature sensing characteristics of the sensor are tested in a temperature-controlled chamber, with a maximum error of ± 1 K. The sensor is also applied to a GPU with real-time temperature variations, demonstrating a maximum error of 0.9 K and a response time of 1.96 s. The sensor not only possesses the advantages of a simple structure, micro size, and convenient fabrication but also exhibits immunity to electromagnetic interference, rapid response, good stability, and excellent repeatability in real-time monitoring of GPU temperature, showing potential for large-scale application.</p></div>","PeriodicalId":19663,"journal":{"name":"Optical Fiber Technology","volume":"87 ","pages":"Article 103944"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A miniature temperature sensor based on upconversion luminescence for real-time GPU temperature monitoring\",\"authors\":\"Zhongli Xue ,&nbsp;Mingyue Xie ,&nbsp;Xiaoyuan Li ,&nbsp;Dianchang Song ,&nbsp;Tonglei Cheng ,&nbsp;Fang Wang\",\"doi\":\"10.1016/j.yofte.2024.103944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper introduces a miniaturized optical fiber temperature sensor based on Fluorescence Intensity Ratio (FIR) technology for real-time monitoring of graphics processing unit (GPU) temperature. Utilizing a femtosecond micromachining system, miniature rectangular holes are etched on a standard multimode fiber. These holes are then filled with a mixture of Er<sup>3+</sup>/Yb<sup>3+</sup> co-doped TeO<sub>2</sub>-Na<sub>2</sub>CO<sub>3</sub>-ZnO powder and polydimethylsiloxane (PDMS) through capillary action, forming a sandwich structure. When illuminated by a 980 nm light source, upconversion (UC) fluorescence is generated, and a mathematical model correlating the fluorescence intensity ratio of two adjacent energy levels with temperature is established. The fundamental temperature sensing characteristics of the sensor are tested in a temperature-controlled chamber, with a maximum error of ± 1 K. The sensor is also applied to a GPU with real-time temperature variations, demonstrating a maximum error of 0.9 K and a response time of 1.96 s. The sensor not only possesses the advantages of a simple structure, micro size, and convenient fabrication but also exhibits immunity to electromagnetic interference, rapid response, good stability, and excellent repeatability in real-time monitoring of GPU temperature, showing potential for large-scale application.</p></div>\",\"PeriodicalId\":19663,\"journal\":{\"name\":\"Optical Fiber Technology\",\"volume\":\"87 \",\"pages\":\"Article 103944\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Fiber Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S106852002400289X\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Fiber Technology","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S106852002400289X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种基于荧光强度比(FIR)技术的微型光纤温度传感器,用于实时监测图形处理器(GPU)的温度。利用飞秒微加工系统,在标准多模光纤上蚀刻出微型矩形孔。然后通过毛细管作用,将 Er3+/Yb3+ 共掺杂 TeO2-Na2CO3-ZnO 粉末和聚二甲基硅氧烷 (PDMS) 的混合物填充到这些孔中,形成夹层结构。在 980 纳米光源的照射下,会产生上转换(UC)荧光,并建立了相邻两个能级的荧光强度比与温度相关的数学模型。该传感器不仅具有结构简单、体积微小、制作方便等优点,而且在实时监测 GPU 温度方面具有抗电磁干扰、响应迅速、稳定性好、重复性好等特点,具有大规模应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A miniature temperature sensor based on upconversion luminescence for real-time GPU temperature monitoring

This paper introduces a miniaturized optical fiber temperature sensor based on Fluorescence Intensity Ratio (FIR) technology for real-time monitoring of graphics processing unit (GPU) temperature. Utilizing a femtosecond micromachining system, miniature rectangular holes are etched on a standard multimode fiber. These holes are then filled with a mixture of Er3+/Yb3+ co-doped TeO2-Na2CO3-ZnO powder and polydimethylsiloxane (PDMS) through capillary action, forming a sandwich structure. When illuminated by a 980 nm light source, upconversion (UC) fluorescence is generated, and a mathematical model correlating the fluorescence intensity ratio of two adjacent energy levels with temperature is established. The fundamental temperature sensing characteristics of the sensor are tested in a temperature-controlled chamber, with a maximum error of ± 1 K. The sensor is also applied to a GPU with real-time temperature variations, demonstrating a maximum error of 0.9 K and a response time of 1.96 s. The sensor not only possesses the advantages of a simple structure, micro size, and convenient fabrication but also exhibits immunity to electromagnetic interference, rapid response, good stability, and excellent repeatability in real-time monitoring of GPU temperature, showing potential for large-scale application.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optical Fiber Technology
Optical Fiber Technology 工程技术-电信学
CiteScore
4.80
自引率
11.10%
发文量
327
审稿时长
63 days
期刊介绍: Innovations in optical fiber technology are revolutionizing world communications. Newly developed fiber amplifiers allow for direct transmission of high-speed signals over transcontinental distances without the need for electronic regeneration. Optical fibers find new applications in data processing. The impact of fiber materials, devices, and systems on communications in the coming decades will create an abundance of primary literature and the need for up-to-date reviews. Optical Fiber Technology: Materials, Devices, and Systems is a new cutting-edge journal designed to fill a need in this rapidly evolving field for speedy publication of regular length papers. Both theoretical and experimental papers on fiber materials, devices, and system performance evaluation and measurements are eligible, with emphasis on practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信