S. Leoni , B. Fornal , A. Bracco , Y. Tsunoda , T. Otsuka
{"title":"原子核形状共存现象的多面性","authors":"S. Leoni , B. Fornal , A. Bracco , Y. Tsunoda , T. Otsuka","doi":"10.1016/j.ppnp.2024.104119","DOIUrl":null,"url":null,"abstract":"<div><p>This article is devoted to a review of decay properties of excited 0<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup></math></span> states in regions of the nuclear chart well known for shape coexistence phenomena. Even–even isotopes around the Z=20 (Ca), 28 (Ni), 50 (Sn), 82 (Pb) proton shell closures and along the Z=36 (Kr), Z=38 (Sr) and Z=40 (Zr) isotopic chains are mainly discussed. The aim is to identify examples of <em>extreme shape coexistence</em>, namely highly deformed structures, well localized in the Potential Energy Surface in the deformation space, which could lead to <span><math><mi>γ</mi></math></span> decays substantially hindered. This is in analogy to the 0<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup></math></span> fission shape isomers in the actinides region and to the superdeformed (SD) states at the decay-out spin in medium/heavy mass systems. In this survey, the Hindrance Factor (HF) of the E2 transitions de-exciting 0<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup></math></span> states or SD decay-out states is a primary quantity which is used to differentiate between types of shape coexistence. The 0<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup></math></span> states, examined with the help of the hindrance factor, reveal a multifaceted scenario of shape coexistence. A limited number of 0<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup></math></span> excitations (in the Ni, Sr, Zr and Cd regions) exhibit large HF values (<span><math><mo>></mo></math></span>10), some of which are associated with the clear separation of coexisting wave functions, while in most cases the decay is not hindered, due to the mixing between different configurations. Comparisons with theory predictions based on various models are also presented, some of which shed light on the microscopic structure of the considered states and the origin of the observed hindrances. The impact of shape ensembles at finite temperature on the decay properties of highly-excited states (Giant Dipole Resonances) is also discussed. This research area offers a complementary approach for identifying regions where extreme shape coexistence phenomena may appear.</p></div>","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":"139 ","pages":"Article 104119"},"PeriodicalIF":14.5000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0146641024000231/pdfft?md5=11c111bcea2c76459e17a8aca56a3023&pid=1-s2.0-S0146641024000231-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Multifaceted character of shape coexistence phenomena in atomic nuclei\",\"authors\":\"S. Leoni , B. Fornal , A. Bracco , Y. Tsunoda , T. Otsuka\",\"doi\":\"10.1016/j.ppnp.2024.104119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article is devoted to a review of decay properties of excited 0<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup></math></span> states in regions of the nuclear chart well known for shape coexistence phenomena. Even–even isotopes around the Z=20 (Ca), 28 (Ni), 50 (Sn), 82 (Pb) proton shell closures and along the Z=36 (Kr), Z=38 (Sr) and Z=40 (Zr) isotopic chains are mainly discussed. The aim is to identify examples of <em>extreme shape coexistence</em>, namely highly deformed structures, well localized in the Potential Energy Surface in the deformation space, which could lead to <span><math><mi>γ</mi></math></span> decays substantially hindered. This is in analogy to the 0<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup></math></span> fission shape isomers in the actinides region and to the superdeformed (SD) states at the decay-out spin in medium/heavy mass systems. In this survey, the Hindrance Factor (HF) of the E2 transitions de-exciting 0<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup></math></span> states or SD decay-out states is a primary quantity which is used to differentiate between types of shape coexistence. The 0<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup></math></span> states, examined with the help of the hindrance factor, reveal a multifaceted scenario of shape coexistence. A limited number of 0<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup></math></span> excitations (in the Ni, Sr, Zr and Cd regions) exhibit large HF values (<span><math><mo>></mo></math></span>10), some of which are associated with the clear separation of coexisting wave functions, while in most cases the decay is not hindered, due to the mixing between different configurations. Comparisons with theory predictions based on various models are also presented, some of which shed light on the microscopic structure of the considered states and the origin of the observed hindrances. The impact of shape ensembles at finite temperature on the decay properties of highly-excited states (Giant Dipole Resonances) is also discussed. This research area offers a complementary approach for identifying regions where extreme shape coexistence phenomena may appear.</p></div>\",\"PeriodicalId\":412,\"journal\":{\"name\":\"Progress in Particle and Nuclear Physics\",\"volume\":\"139 \",\"pages\":\"Article 104119\"},\"PeriodicalIF\":14.5000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0146641024000231/pdfft?md5=11c111bcea2c76459e17a8aca56a3023&pid=1-s2.0-S0146641024000231-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Particle and Nuclear Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0146641024000231\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Particle and Nuclear Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0146641024000231","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
Multifaceted character of shape coexistence phenomena in atomic nuclei
This article is devoted to a review of decay properties of excited 0 states in regions of the nuclear chart well known for shape coexistence phenomena. Even–even isotopes around the Z=20 (Ca), 28 (Ni), 50 (Sn), 82 (Pb) proton shell closures and along the Z=36 (Kr), Z=38 (Sr) and Z=40 (Zr) isotopic chains are mainly discussed. The aim is to identify examples of extreme shape coexistence, namely highly deformed structures, well localized in the Potential Energy Surface in the deformation space, which could lead to decays substantially hindered. This is in analogy to the 0 fission shape isomers in the actinides region and to the superdeformed (SD) states at the decay-out spin in medium/heavy mass systems. In this survey, the Hindrance Factor (HF) of the E2 transitions de-exciting 0 states or SD decay-out states is a primary quantity which is used to differentiate between types of shape coexistence. The 0 states, examined with the help of the hindrance factor, reveal a multifaceted scenario of shape coexistence. A limited number of 0 excitations (in the Ni, Sr, Zr and Cd regions) exhibit large HF values (10), some of which are associated with the clear separation of coexisting wave functions, while in most cases the decay is not hindered, due to the mixing between different configurations. Comparisons with theory predictions based on various models are also presented, some of which shed light on the microscopic structure of the considered states and the origin of the observed hindrances. The impact of shape ensembles at finite temperature on the decay properties of highly-excited states (Giant Dipole Resonances) is also discussed. This research area offers a complementary approach for identifying regions where extreme shape coexistence phenomena may appear.
期刊介绍:
Taking the format of four issues per year, the journal Progress in Particle and Nuclear Physics aims to discuss new developments in the field at a level suitable for the general nuclear and particle physicist and, in greater technical depth, to explore the most important advances in these areas. Most of the articles will be in one of the fields of nuclear physics, hadron physics, heavy ion physics, particle physics, as well as astrophysics and cosmology. A particular effort is made to treat topics of an interface type for which both particle and nuclear physics are important. Related topics such as detector physics, accelerator physics or the application of nuclear physics in the medical and archaeological fields will also be treated from time to time.