{"title":"掺杂 Mo6+ 对尖晶石型 LiMn2O4 正极材料的结构和电化学性能的影响","authors":"Shengwen Ou, Zhen Li, Yang You, Lianghua Wang, Jingyue Xu, Mingliang Yuan","doi":"10.1016/j.partic.2024.07.020","DOIUrl":null,"url":null,"abstract":"<div><p>The Jahn-Teller effect and the dissolution of Mn are significant factors contributing to the capacity degradation of spinel LiMn<sub>2</sub>O<sub>4</sub> cathode materials during charging and discharging. In this study, Mo<sup>6+</sup>-doped polycrystalline octahedral Li<sub>1.05</sub>Mn<sub>2-x</sub>Mo<sub>x</sub>O<sub>4</sub> (x = 0, 0.005, 0.01, 0.015) cathode materials were prepared by simple solid-phase sintering, and their crystal structures, microscopic morphologies, and elemental compositions were characterized and analyzed. The results showed that the doping of Mo<sup>6+</sup> promoted the growth of (111) crystalline facets and increased the ratio of Mn<sup>3+</sup>/Mn<sup>4+</sup>. The electrochemical performance of the materials was also tested, revealing that the doping of Mo<sup>6+</sup> significantly improved the initial charge/discharge specific capacity and cycling stability. The modified sample (LMO-0.01Mo) retained a reversible capacity of 114.83 mA h/g with a capacity retention of 97.29% after 300 cycles. Additionally, the doping of Mo<sup>6+</sup> formed a thinner, smoother SEI film and effectively inhibited the dissolution of Mn. Using density-functional theory (DFT) calculations to analyze the doping mechanism, it was found that doping shortens the Mn-O bond length inside the lattice and increases the Li-O bond length. This implies that the Li<sup>+</sup> diffusion channel is widened, thereby increasing the Li<sup>+</sup> diffusion rate. Additionally, the modification reduces the energy band gap, resulting in higher electronic conductivity.</p></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"94 ","pages":"Pages 146-157"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Mo6+ doping on the structure and electrochemical properties of spinel-type LiMn2O4 cathode materials\",\"authors\":\"Shengwen Ou, Zhen Li, Yang You, Lianghua Wang, Jingyue Xu, Mingliang Yuan\",\"doi\":\"10.1016/j.partic.2024.07.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Jahn-Teller effect and the dissolution of Mn are significant factors contributing to the capacity degradation of spinel LiMn<sub>2</sub>O<sub>4</sub> cathode materials during charging and discharging. In this study, Mo<sup>6+</sup>-doped polycrystalline octahedral Li<sub>1.05</sub>Mn<sub>2-x</sub>Mo<sub>x</sub>O<sub>4</sub> (x = 0, 0.005, 0.01, 0.015) cathode materials were prepared by simple solid-phase sintering, and their crystal structures, microscopic morphologies, and elemental compositions were characterized and analyzed. The results showed that the doping of Mo<sup>6+</sup> promoted the growth of (111) crystalline facets and increased the ratio of Mn<sup>3+</sup>/Mn<sup>4+</sup>. The electrochemical performance of the materials was also tested, revealing that the doping of Mo<sup>6+</sup> significantly improved the initial charge/discharge specific capacity and cycling stability. The modified sample (LMO-0.01Mo) retained a reversible capacity of 114.83 mA h/g with a capacity retention of 97.29% after 300 cycles. Additionally, the doping of Mo<sup>6+</sup> formed a thinner, smoother SEI film and effectively inhibited the dissolution of Mn. Using density-functional theory (DFT) calculations to analyze the doping mechanism, it was found that doping shortens the Mn-O bond length inside the lattice and increases the Li-O bond length. This implies that the Li<sup>+</sup> diffusion channel is widened, thereby increasing the Li<sup>+</sup> diffusion rate. Additionally, the modification reduces the energy band gap, resulting in higher electronic conductivity.</p></div>\",\"PeriodicalId\":401,\"journal\":{\"name\":\"Particuology\",\"volume\":\"94 \",\"pages\":\"Pages 146-157\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Particuology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674200124001470\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200124001470","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Effect of Mo6+ doping on the structure and electrochemical properties of spinel-type LiMn2O4 cathode materials
The Jahn-Teller effect and the dissolution of Mn are significant factors contributing to the capacity degradation of spinel LiMn2O4 cathode materials during charging and discharging. In this study, Mo6+-doped polycrystalline octahedral Li1.05Mn2-xMoxO4 (x = 0, 0.005, 0.01, 0.015) cathode materials were prepared by simple solid-phase sintering, and their crystal structures, microscopic morphologies, and elemental compositions were characterized and analyzed. The results showed that the doping of Mo6+ promoted the growth of (111) crystalline facets and increased the ratio of Mn3+/Mn4+. The electrochemical performance of the materials was also tested, revealing that the doping of Mo6+ significantly improved the initial charge/discharge specific capacity and cycling stability. The modified sample (LMO-0.01Mo) retained a reversible capacity of 114.83 mA h/g with a capacity retention of 97.29% after 300 cycles. Additionally, the doping of Mo6+ formed a thinner, smoother SEI film and effectively inhibited the dissolution of Mn. Using density-functional theory (DFT) calculations to analyze the doping mechanism, it was found that doping shortens the Mn-O bond length inside the lattice and increases the Li-O bond length. This implies that the Li+ diffusion channel is widened, thereby increasing the Li+ diffusion rate. Additionally, the modification reduces the energy band gap, resulting in higher electronic conductivity.
期刊介绍:
The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles.
Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors.
Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology.
Key topics concerning the creation and processing of particulates include:
-Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales
-Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes
-Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc.
-Experimental and computational methods for visualization and analysis of particulate system.
These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.