线性抛物方程全离散有限差分法的后验误差估计

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Mengli Mao , Wansheng Wang
{"title":"线性抛物方程全离散有限差分法的后验误差估计","authors":"Mengli Mao ,&nbsp;Wansheng Wang","doi":"10.1016/j.apnum.2024.08.006","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study a posteriori error estimates for one-dimensional and two-dimensional linear parabolic equations. The backward Euler method and the Crank–Nicolson method for the time discretization are used, and the second-order finite difference method is employed for the space discretization. Based on linear interpolation and interpolation estimate, a posteriori error estimators corresponding to space discretization are derived. For the backward Euler method and the Crank–Nicolson method, the errors due to time discretization are obtained by exploring linear continuous approximation and two different continuous, piecewise quadratic time reconstructions, respectively. As a consequence, the upper and lower bounds of a posteriori error estimates for the fully discrete finite difference methods are derived, and these error bounds depend only on the discretization parameters and the data of the model problems. Numerical experiments are presented to illustrate our theoretical results.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A posteriori error estimates for fully discrete finite difference method for linear parabolic equations\",\"authors\":\"Mengli Mao ,&nbsp;Wansheng Wang\",\"doi\":\"10.1016/j.apnum.2024.08.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study a posteriori error estimates for one-dimensional and two-dimensional linear parabolic equations. The backward Euler method and the Crank–Nicolson method for the time discretization are used, and the second-order finite difference method is employed for the space discretization. Based on linear interpolation and interpolation estimate, a posteriori error estimators corresponding to space discretization are derived. For the backward Euler method and the Crank–Nicolson method, the errors due to time discretization are obtained by exploring linear continuous approximation and two different continuous, piecewise quadratic time reconstructions, respectively. As a consequence, the upper and lower bounds of a posteriori error estimates for the fully discrete finite difference methods are derived, and these error bounds depend only on the discretization parameters and the data of the model problems. Numerical experiments are presented to illustrate our theoretical results.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424002022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424002022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一维和二维线性抛物方程的后验误差估计。时间离散采用后向欧拉法和 Crank-Nicolson 法,空间离散采用二阶有限差分法。基于线性插值和插值估计,得出了与空间离散化相对应的后验误差估计值。对于后向欧拉法和 Crank-Nicolson 法,分别通过探索线性连续近似和两种不同的连续、片断二次时间重构来获得时间离散化引起的误差。因此,得出了完全离散有限差分方法的后验误差估计上下限,这些误差下限仅取决于离散化参数和模型问题的数据。为了说明我们的理论结果,我们进行了数值实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A posteriori error estimates for fully discrete finite difference method for linear parabolic equations

In this paper, we study a posteriori error estimates for one-dimensional and two-dimensional linear parabolic equations. The backward Euler method and the Crank–Nicolson method for the time discretization are used, and the second-order finite difference method is employed for the space discretization. Based on linear interpolation and interpolation estimate, a posteriori error estimators corresponding to space discretization are derived. For the backward Euler method and the Crank–Nicolson method, the errors due to time discretization are obtained by exploring linear continuous approximation and two different continuous, piecewise quadratic time reconstructions, respectively. As a consequence, the upper and lower bounds of a posteriori error estimates for the fully discrete finite difference methods are derived, and these error bounds depend only on the discretization parameters and the data of the model problems. Numerical experiments are presented to illustrate our theoretical results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信