{"title":"用于质量模式预测和优化的监督概率动态控制潜变量模型。","authors":"Niannian Zheng , Yuri A.W. Shardt , Xiaoli Luan , Fei Liu","doi":"10.1016/j.isatra.2024.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>A supervised probabilistic dynamic-controlled latent-variable (SPDCLV) model is proposed for online prediction, as well as real-time optimisation of process quality indicators. Compared to existing probabilistic latent-variable models, the key advantage of the proposed method lies in explicitly modelling the dynamic causality from the manipulated inputs to the quality pattern. This is achieved using a well-designed, dynamic-controlled Bayesian network. Furthermore, the algorithms for expectation-maximisation, forward filtering, and backward smoothing are designed for learning the SPDCLV model. For engineering applications, a framework for pattern-based quality prediction and optimisation is proposed, under which the pattern-filtering and pattern-based soft sensor are explored for online quality prediction. Furthermore, quality optimisation can be realised by directly controlling the pattern to the desired condition. Finally, case studies on both an industrial primary milling circuit and a numerical example illustrate the benefits of the SPDCLV method in that it can fully model the process dynamics, effectively predict and optimise the quality indicators, and monitor the process.</p></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":"153 ","pages":"Pages 243-261"},"PeriodicalIF":6.3000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0019057824003732/pdfft?md5=00b097e8d2bb6a0d6bafde27114272f2&pid=1-s2.0-S0019057824003732-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Supervised probabilistic dynamic-controlled latent-variable model for quality pattern prediction and optimisation\",\"authors\":\"Niannian Zheng , Yuri A.W. Shardt , Xiaoli Luan , Fei Liu\",\"doi\":\"10.1016/j.isatra.2024.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A supervised probabilistic dynamic-controlled latent-variable (SPDCLV) model is proposed for online prediction, as well as real-time optimisation of process quality indicators. Compared to existing probabilistic latent-variable models, the key advantage of the proposed method lies in explicitly modelling the dynamic causality from the manipulated inputs to the quality pattern. This is achieved using a well-designed, dynamic-controlled Bayesian network. Furthermore, the algorithms for expectation-maximisation, forward filtering, and backward smoothing are designed for learning the SPDCLV model. For engineering applications, a framework for pattern-based quality prediction and optimisation is proposed, under which the pattern-filtering and pattern-based soft sensor are explored for online quality prediction. Furthermore, quality optimisation can be realised by directly controlling the pattern to the desired condition. Finally, case studies on both an industrial primary milling circuit and a numerical example illustrate the benefits of the SPDCLV method in that it can fully model the process dynamics, effectively predict and optimise the quality indicators, and monitor the process.</p></div>\",\"PeriodicalId\":14660,\"journal\":{\"name\":\"ISA transactions\",\"volume\":\"153 \",\"pages\":\"Pages 243-261\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0019057824003732/pdfft?md5=00b097e8d2bb6a0d6bafde27114272f2&pid=1-s2.0-S0019057824003732-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISA transactions\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019057824003732\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019057824003732","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Supervised probabilistic dynamic-controlled latent-variable model for quality pattern prediction and optimisation
A supervised probabilistic dynamic-controlled latent-variable (SPDCLV) model is proposed for online prediction, as well as real-time optimisation of process quality indicators. Compared to existing probabilistic latent-variable models, the key advantage of the proposed method lies in explicitly modelling the dynamic causality from the manipulated inputs to the quality pattern. This is achieved using a well-designed, dynamic-controlled Bayesian network. Furthermore, the algorithms for expectation-maximisation, forward filtering, and backward smoothing are designed for learning the SPDCLV model. For engineering applications, a framework for pattern-based quality prediction and optimisation is proposed, under which the pattern-filtering and pattern-based soft sensor are explored for online quality prediction. Furthermore, quality optimisation can be realised by directly controlling the pattern to the desired condition. Finally, case studies on both an industrial primary milling circuit and a numerical example illustrate the benefits of the SPDCLV method in that it can fully model the process dynamics, effectively predict and optimise the quality indicators, and monitor the process.
期刊介绍:
ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.