用于质量模式预测和优化的监督概率动态控制潜变量模型。

IF 6.3 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Niannian Zheng , Yuri A.W. Shardt , Xiaoli Luan , Fei Liu
{"title":"用于质量模式预测和优化的监督概率动态控制潜变量模型。","authors":"Niannian Zheng ,&nbsp;Yuri A.W. Shardt ,&nbsp;Xiaoli Luan ,&nbsp;Fei Liu","doi":"10.1016/j.isatra.2024.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>A supervised probabilistic dynamic-controlled latent-variable (SPDCLV) model is proposed for online prediction, as well as real-time optimisation of process quality indicators. Compared to existing probabilistic latent-variable models, the key advantage of the proposed method lies in explicitly modelling the dynamic causality from the manipulated inputs to the quality pattern. This is achieved using a well-designed, dynamic-controlled Bayesian network. Furthermore, the algorithms for expectation-maximisation, forward filtering, and backward smoothing are designed for learning the SPDCLV model. For engineering applications, a framework for pattern-based quality prediction and optimisation is proposed, under which the pattern-filtering and pattern-based soft sensor are explored for online quality prediction. Furthermore, quality optimisation can be realised by directly controlling the pattern to the desired condition. Finally, case studies on both an industrial primary milling circuit and a numerical example illustrate the benefits of the SPDCLV method in that it can fully model the process dynamics, effectively predict and optimise the quality indicators, and monitor the process.</p></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":"153 ","pages":"Pages 243-261"},"PeriodicalIF":6.3000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0019057824003732/pdfft?md5=00b097e8d2bb6a0d6bafde27114272f2&pid=1-s2.0-S0019057824003732-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Supervised probabilistic dynamic-controlled latent-variable model for quality pattern prediction and optimisation\",\"authors\":\"Niannian Zheng ,&nbsp;Yuri A.W. Shardt ,&nbsp;Xiaoli Luan ,&nbsp;Fei Liu\",\"doi\":\"10.1016/j.isatra.2024.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A supervised probabilistic dynamic-controlled latent-variable (SPDCLV) model is proposed for online prediction, as well as real-time optimisation of process quality indicators. Compared to existing probabilistic latent-variable models, the key advantage of the proposed method lies in explicitly modelling the dynamic causality from the manipulated inputs to the quality pattern. This is achieved using a well-designed, dynamic-controlled Bayesian network. Furthermore, the algorithms for expectation-maximisation, forward filtering, and backward smoothing are designed for learning the SPDCLV model. For engineering applications, a framework for pattern-based quality prediction and optimisation is proposed, under which the pattern-filtering and pattern-based soft sensor are explored for online quality prediction. Furthermore, quality optimisation can be realised by directly controlling the pattern to the desired condition. Finally, case studies on both an industrial primary milling circuit and a numerical example illustrate the benefits of the SPDCLV method in that it can fully model the process dynamics, effectively predict and optimise the quality indicators, and monitor the process.</p></div>\",\"PeriodicalId\":14660,\"journal\":{\"name\":\"ISA transactions\",\"volume\":\"153 \",\"pages\":\"Pages 243-261\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0019057824003732/pdfft?md5=00b097e8d2bb6a0d6bafde27114272f2&pid=1-s2.0-S0019057824003732-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISA transactions\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019057824003732\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019057824003732","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种监督概率动态控制潜变量(SPDCLV)模型,用于在线预测和实时优化过程质量指标。与现有的概率潜变量模型相比,所提方法的主要优势在于明确地模拟了从操作输入到质量模式的动态因果关系。这是通过精心设计的动态控制贝叶斯网络实现的。此外,为学习 SPDCLV 模型,还设计了期望最大化、前向滤波和后向平滑算法。针对工程应用,提出了基于模式的质量预测和优化框架,在此框架下,探索了在线质量预测的模式过滤和基于模式的软传感器。此外,质量优化可以通过直接控制图案来实现。最后,通过对工业一次研磨电路和一个数值实例的案例研究,说明了 SPDCLV 方法的优势,即它可以全面模拟过程动态,有效预测和优化质量指标,并监控过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Supervised probabilistic dynamic-controlled latent-variable model for quality pattern prediction and optimisation

A supervised probabilistic dynamic-controlled latent-variable (SPDCLV) model is proposed for online prediction, as well as real-time optimisation of process quality indicators. Compared to existing probabilistic latent-variable models, the key advantage of the proposed method lies in explicitly modelling the dynamic causality from the manipulated inputs to the quality pattern. This is achieved using a well-designed, dynamic-controlled Bayesian network. Furthermore, the algorithms for expectation-maximisation, forward filtering, and backward smoothing are designed for learning the SPDCLV model. For engineering applications, a framework for pattern-based quality prediction and optimisation is proposed, under which the pattern-filtering and pattern-based soft sensor are explored for online quality prediction. Furthermore, quality optimisation can be realised by directly controlling the pattern to the desired condition. Finally, case studies on both an industrial primary milling circuit and a numerical example illustrate the benefits of the SPDCLV method in that it can fully model the process dynamics, effectively predict and optimise the quality indicators, and monitor the process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ISA transactions
ISA transactions 工程技术-工程:综合
CiteScore
11.70
自引率
12.30%
发文量
824
审稿时长
4.4 months
期刊介绍: ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信