Anniina Tervi, Markus Ramste, Erik Abner, Paul Cheng, Jacqueline M Lane, Matthew Maher, Jesse Valliere, Vilma Lammi, Satu Strausz, Juha Riikonen, Trieu Nguyen, Gabriella E Martyn, Maya U Sheth, Fan Xia, Mauro Lago Docampo, Wenduo Gu, Tõnu Esko, Richa Saxena, Matti Pirinen, Aarno Palotie, Samuli Ripatti, Nasa Sinnott-Armstrong, Mark Daly, Jesse M Engreitz, Marlene Rabinovitch, Caroline A Heckman, Thomas Quertermous, Samuel E Jones, Hanna M Ollila
{"title":"雷诺氏综合征的遗传和功能分析涉及血管和免疫系统中的基因位点。","authors":"Anniina Tervi, Markus Ramste, Erik Abner, Paul Cheng, Jacqueline M Lane, Matthew Maher, Jesse Valliere, Vilma Lammi, Satu Strausz, Juha Riikonen, Trieu Nguyen, Gabriella E Martyn, Maya U Sheth, Fan Xia, Mauro Lago Docampo, Wenduo Gu, Tõnu Esko, Richa Saxena, Matti Pirinen, Aarno Palotie, Samuli Ripatti, Nasa Sinnott-Armstrong, Mark Daly, Jesse M Engreitz, Marlene Rabinovitch, Caroline A Heckman, Thomas Quertermous, Samuel E Jones, Hanna M Ollila","doi":"10.1016/j.xgen.2024.100630","DOIUrl":null,"url":null,"abstract":"<p><p>Raynaud's syndrome is a dysautonomia where exposure to cold causes vasoconstriction and hypoxia, particularly in the extremities. We performed meta-analysis in four cohorts and discovered eight loci (ADRA2A, IRX1, NOS3, ACVR2A, TMEM51, PCDH10-DT, HLA, and RAB6C) where ADRA2A, ACVR2A, NOS3, TMEM51, and IRX1 co-localized with expression quantitative trait loci (eQTLs), particularly in distal arteries. CRISPR gene editing further showed that ADRA2A and NOS3 loci modified gene expression and in situ RNAscope clarified the specificity of ADRA2A in small vessels and IRX1 around small capillaries in the skin. A functional contraction assay in the cold showed lower contraction in ADRA2A-deficient and higher contraction in ADRA2A-overexpressing smooth muscle cells. Overall, our study highlights the power of genome-wide association testing with functional follow-up as a method to understand complex diseases. The results indicate temperature-dependent adrenergic signaling through ADRA2A, effects at the microvasculature by IRX1, endothelial signaling by NOS3, and immune mechanisms by the HLA locus in Raynaud's syndrome.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":null,"pages":null},"PeriodicalIF":11.1000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11480858/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genetic and functional analysis of Raynaud's syndrome implicates loci in vasculature and immunity.\",\"authors\":\"Anniina Tervi, Markus Ramste, Erik Abner, Paul Cheng, Jacqueline M Lane, Matthew Maher, Jesse Valliere, Vilma Lammi, Satu Strausz, Juha Riikonen, Trieu Nguyen, Gabriella E Martyn, Maya U Sheth, Fan Xia, Mauro Lago Docampo, Wenduo Gu, Tõnu Esko, Richa Saxena, Matti Pirinen, Aarno Palotie, Samuli Ripatti, Nasa Sinnott-Armstrong, Mark Daly, Jesse M Engreitz, Marlene Rabinovitch, Caroline A Heckman, Thomas Quertermous, Samuel E Jones, Hanna M Ollila\",\"doi\":\"10.1016/j.xgen.2024.100630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Raynaud's syndrome is a dysautonomia where exposure to cold causes vasoconstriction and hypoxia, particularly in the extremities. We performed meta-analysis in four cohorts and discovered eight loci (ADRA2A, IRX1, NOS3, ACVR2A, TMEM51, PCDH10-DT, HLA, and RAB6C) where ADRA2A, ACVR2A, NOS3, TMEM51, and IRX1 co-localized with expression quantitative trait loci (eQTLs), particularly in distal arteries. CRISPR gene editing further showed that ADRA2A and NOS3 loci modified gene expression and in situ RNAscope clarified the specificity of ADRA2A in small vessels and IRX1 around small capillaries in the skin. A functional contraction assay in the cold showed lower contraction in ADRA2A-deficient and higher contraction in ADRA2A-overexpressing smooth muscle cells. Overall, our study highlights the power of genome-wide association testing with functional follow-up as a method to understand complex diseases. The results indicate temperature-dependent adrenergic signaling through ADRA2A, effects at the microvasculature by IRX1, endothelial signaling by NOS3, and immune mechanisms by the HLA locus in Raynaud's syndrome.</p>\",\"PeriodicalId\":72539,\"journal\":{\"name\":\"Cell genomics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11480858/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xgen.2024.100630\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2024.100630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Genetic and functional analysis of Raynaud's syndrome implicates loci in vasculature and immunity.
Raynaud's syndrome is a dysautonomia where exposure to cold causes vasoconstriction and hypoxia, particularly in the extremities. We performed meta-analysis in four cohorts and discovered eight loci (ADRA2A, IRX1, NOS3, ACVR2A, TMEM51, PCDH10-DT, HLA, and RAB6C) where ADRA2A, ACVR2A, NOS3, TMEM51, and IRX1 co-localized with expression quantitative trait loci (eQTLs), particularly in distal arteries. CRISPR gene editing further showed that ADRA2A and NOS3 loci modified gene expression and in situ RNAscope clarified the specificity of ADRA2A in small vessels and IRX1 around small capillaries in the skin. A functional contraction assay in the cold showed lower contraction in ADRA2A-deficient and higher contraction in ADRA2A-overexpressing smooth muscle cells. Overall, our study highlights the power of genome-wide association testing with functional follow-up as a method to understand complex diseases. The results indicate temperature-dependent adrenergic signaling through ADRA2A, effects at the microvasculature by IRX1, endothelial signaling by NOS3, and immune mechanisms by the HLA locus in Raynaud's syndrome.