{"title":"糖尿病视网膜病变严重程度的优化自动检测:集成改进的多阈值调谐蜂群算法和改进的混合蝴蝶优化算法。","authors":"Usharani Bhimavarapu","doi":"10.1007/s13755-024-00301-x","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic retinopathy, a complication of diabetes, damages the retina due to prolonged high blood sugar levels, leading to vision impairment and blindness. Early detection through regular eye exams and proper diabetes management are crucial in preventing vision loss. DR is categorized into five classes based on severity, ranging from no retinopathy to proliferative diabetic retinopathy. This study proposes an automated detection method using fundus images. Image segmentation divides fundus images into homogeneous regions, facilitating feature extraction. Feature selection aims to reduce computational costs and improve classification accuracy by selecting relevant features. The proposed algorithm integrates an Improved Tunicate Swarm Algorithm (ITSA) with Renyi's entropy for enhanced adaptability in the initial and final stages. An Improved Hybrid Butterfly Optimization (IHBO) Algorithm is also introduced for feature selection. The effectiveness of the proposed method is demonstrated using retinal fundus image datasets, achieving promising results in DR severity classification. For the IDRiD dataset, the proposed model achieves a segmentation Dice coefficient of 98.06% and classification accuracy of 98.21%. In contrast, the E-Optha dataset attains a segmentation Dice coefficient of 97.95% and classification accuracy of 99.96%. Experimental results indicate the algorithm's ability to accurately classify DR severity levels, highlighting its potential for early detection and prevention of diabetes-related blindness.</p>","PeriodicalId":46312,"journal":{"name":"Health Information Science and Systems","volume":"12 1","pages":"42"},"PeriodicalIF":4.7000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11319704/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optimized automated detection of diabetic retinopathy severity: integrating improved multithresholding tunicate swarm algorithm and improved hybrid butterfly optimization.\",\"authors\":\"Usharani Bhimavarapu\",\"doi\":\"10.1007/s13755-024-00301-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetic retinopathy, a complication of diabetes, damages the retina due to prolonged high blood sugar levels, leading to vision impairment and blindness. Early detection through regular eye exams and proper diabetes management are crucial in preventing vision loss. DR is categorized into five classes based on severity, ranging from no retinopathy to proliferative diabetic retinopathy. This study proposes an automated detection method using fundus images. Image segmentation divides fundus images into homogeneous regions, facilitating feature extraction. Feature selection aims to reduce computational costs and improve classification accuracy by selecting relevant features. The proposed algorithm integrates an Improved Tunicate Swarm Algorithm (ITSA) with Renyi's entropy for enhanced adaptability in the initial and final stages. An Improved Hybrid Butterfly Optimization (IHBO) Algorithm is also introduced for feature selection. The effectiveness of the proposed method is demonstrated using retinal fundus image datasets, achieving promising results in DR severity classification. For the IDRiD dataset, the proposed model achieves a segmentation Dice coefficient of 98.06% and classification accuracy of 98.21%. In contrast, the E-Optha dataset attains a segmentation Dice coefficient of 97.95% and classification accuracy of 99.96%. Experimental results indicate the algorithm's ability to accurately classify DR severity levels, highlighting its potential for early detection and prevention of diabetes-related blindness.</p>\",\"PeriodicalId\":46312,\"journal\":{\"name\":\"Health Information Science and Systems\",\"volume\":\"12 1\",\"pages\":\"42\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11319704/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health Information Science and Systems\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13755-024-00301-x\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICAL INFORMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Information Science and Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13755-024-00301-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
Optimized automated detection of diabetic retinopathy severity: integrating improved multithresholding tunicate swarm algorithm and improved hybrid butterfly optimization.
Diabetic retinopathy, a complication of diabetes, damages the retina due to prolonged high blood sugar levels, leading to vision impairment and blindness. Early detection through regular eye exams and proper diabetes management are crucial in preventing vision loss. DR is categorized into five classes based on severity, ranging from no retinopathy to proliferative diabetic retinopathy. This study proposes an automated detection method using fundus images. Image segmentation divides fundus images into homogeneous regions, facilitating feature extraction. Feature selection aims to reduce computational costs and improve classification accuracy by selecting relevant features. The proposed algorithm integrates an Improved Tunicate Swarm Algorithm (ITSA) with Renyi's entropy for enhanced adaptability in the initial and final stages. An Improved Hybrid Butterfly Optimization (IHBO) Algorithm is also introduced for feature selection. The effectiveness of the proposed method is demonstrated using retinal fundus image datasets, achieving promising results in DR severity classification. For the IDRiD dataset, the proposed model achieves a segmentation Dice coefficient of 98.06% and classification accuracy of 98.21%. In contrast, the E-Optha dataset attains a segmentation Dice coefficient of 97.95% and classification accuracy of 99.96%. Experimental results indicate the algorithm's ability to accurately classify DR severity levels, highlighting its potential for early detection and prevention of diabetes-related blindness.
期刊介绍:
Health Information Science and Systems is a multidisciplinary journal that integrates artificial intelligence/computer science/information technology with health science and services, embracing information science research coupled with topics related to the modeling, design, development, integration and management of health information systems, smart health, artificial intelligence in medicine, and computer aided diagnosis, medical expert systems. The scope includes: i.) smart health, artificial Intelligence in medicine, computer aided diagnosis, medical image processing, medical expert systems ii.) medical big data, medical/health/biomedicine information resources such as patient medical records, devices and equipments, software and tools to capture, store, retrieve, process, analyze, optimize the use of information in the health domain, iii.) data management, data mining, and knowledge discovery, all of which play a key role in decision making, management of public health, examination of standards, privacy and security issues, iv.) development of new architectures and applications for health information systems.