Anastasia L Sowers, Sangeeta Gohain, Elijah F Edmondson, Rajani Choudhuri, Murali C Krishna, John A Cook, James B Mitchell
{"title":"非致命性全身辐照后服用雷帕霉素可减少小鼠的癌症发生并提高其存活率","authors":"Anastasia L Sowers, Sangeeta Gohain, Elijah F Edmondson, Rajani Choudhuri, Murali C Krishna, John A Cook, James B Mitchell","doi":"10.1667/RADE-24-00111.1","DOIUrl":null,"url":null,"abstract":"<p><p>The rationale of this study stems from the concern of a radiation-induced accident or terrorist-mediated nuclear attack resulting in large populations of people exposed to nonlethal radiation doses or after a course of definitive radiation therapy which could substantially increase the risk for cancer induction after exposure. Currently, there are no safe and effective interventions to reduce this increased cancer risk to humans. We have tested the hypothesis that the mTOR inhibitor, rapamycin, administered in the diet of mice would reduce or delay radiation-induced cancer when given after radiation exposure. A total-body irradiation (TBI) of 3 Gy was administered to female C3H/Hen mice. Immediately after TBI, along with untreated control groups, animals were placed on chow containing different concentrations of encapsulated rapamycin (14, 40, 140 mg/kg chow). Animals remained on the respective control or rapamycin diets and were followed for their entire lifespan (total of 795 mice). The endpoint for the study was tumor formation (not to exceed 1 cm) or until the animal reached a humane endpoint at which time the animal was euthanized and evaluated for the presence of tumors (pathology evaluated on all animals). Kaplan-Meier survival curves revealed that all three concentrations of rapamycin afforded a significant survival advantage by delaying the time at which tumors appeared and reduction of the incidence of certain tumor types such as hepatocellular carcinomas. The survival advantage was dependent on the rapamycin concentration used. Further, there was a survival advantage when delaying the rapamycin chow by 1 month after TBI. Rapamycin is FDA-approved for human use and could be considered for use in individuals exposed to nonlethal TBI from a nuclear accident or attack or after significant therapeutic doses for cancer treatment.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"639-648"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11556393/pdf/","citationCount":"0","resultStr":"{\"title\":\"Rapamycin Reduces Carcinogenesis and Enhances Survival in Mice when Administered after Nonlethal Total-Body Irradiation.\",\"authors\":\"Anastasia L Sowers, Sangeeta Gohain, Elijah F Edmondson, Rajani Choudhuri, Murali C Krishna, John A Cook, James B Mitchell\",\"doi\":\"10.1667/RADE-24-00111.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rationale of this study stems from the concern of a radiation-induced accident or terrorist-mediated nuclear attack resulting in large populations of people exposed to nonlethal radiation doses or after a course of definitive radiation therapy which could substantially increase the risk for cancer induction after exposure. Currently, there are no safe and effective interventions to reduce this increased cancer risk to humans. We have tested the hypothesis that the mTOR inhibitor, rapamycin, administered in the diet of mice would reduce or delay radiation-induced cancer when given after radiation exposure. A total-body irradiation (TBI) of 3 Gy was administered to female C3H/Hen mice. Immediately after TBI, along with untreated control groups, animals were placed on chow containing different concentrations of encapsulated rapamycin (14, 40, 140 mg/kg chow). Animals remained on the respective control or rapamycin diets and were followed for their entire lifespan (total of 795 mice). The endpoint for the study was tumor formation (not to exceed 1 cm) or until the animal reached a humane endpoint at which time the animal was euthanized and evaluated for the presence of tumors (pathology evaluated on all animals). Kaplan-Meier survival curves revealed that all three concentrations of rapamycin afforded a significant survival advantage by delaying the time at which tumors appeared and reduction of the incidence of certain tumor types such as hepatocellular carcinomas. The survival advantage was dependent on the rapamycin concentration used. Further, there was a survival advantage when delaying the rapamycin chow by 1 month after TBI. Rapamycin is FDA-approved for human use and could be considered for use in individuals exposed to nonlethal TBI from a nuclear accident or attack or after significant therapeutic doses for cancer treatment.</p>\",\"PeriodicalId\":20903,\"journal\":{\"name\":\"Radiation research\",\"volume\":\" \",\"pages\":\"639-648\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11556393/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiation research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1667/RADE-24-00111.1\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1667/RADE-24-00111.1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Rapamycin Reduces Carcinogenesis and Enhances Survival in Mice when Administered after Nonlethal Total-Body Irradiation.
The rationale of this study stems from the concern of a radiation-induced accident or terrorist-mediated nuclear attack resulting in large populations of people exposed to nonlethal radiation doses or after a course of definitive radiation therapy which could substantially increase the risk for cancer induction after exposure. Currently, there are no safe and effective interventions to reduce this increased cancer risk to humans. We have tested the hypothesis that the mTOR inhibitor, rapamycin, administered in the diet of mice would reduce or delay radiation-induced cancer when given after radiation exposure. A total-body irradiation (TBI) of 3 Gy was administered to female C3H/Hen mice. Immediately after TBI, along with untreated control groups, animals were placed on chow containing different concentrations of encapsulated rapamycin (14, 40, 140 mg/kg chow). Animals remained on the respective control or rapamycin diets and were followed for their entire lifespan (total of 795 mice). The endpoint for the study was tumor formation (not to exceed 1 cm) or until the animal reached a humane endpoint at which time the animal was euthanized and evaluated for the presence of tumors (pathology evaluated on all animals). Kaplan-Meier survival curves revealed that all three concentrations of rapamycin afforded a significant survival advantage by delaying the time at which tumors appeared and reduction of the incidence of certain tumor types such as hepatocellular carcinomas. The survival advantage was dependent on the rapamycin concentration used. Further, there was a survival advantage when delaying the rapamycin chow by 1 month after TBI. Rapamycin is FDA-approved for human use and could be considered for use in individuals exposed to nonlethal TBI from a nuclear accident or attack or after significant therapeutic doses for cancer treatment.
期刊介绍:
Radiation Research publishes original articles dealing with radiation effects and related subjects in the areas of physics, chemistry, biology
and medicine, including epidemiology and translational research. The term radiation is used in its broadest sense and includes specifically
ionizing radiation and ultraviolet, visible and infrared light as well as microwaves, ultrasound and heat. Effects may be physical, chemical or
biological. Related subjects include (but are not limited to) dosimetry methods and instrumentation, isotope techniques and studies with
chemical agents contributing to the understanding of radiation effects.