Kaitlin Tabaracci, Jacques Vos, Daniel J Robertson
{"title":"测试速率对与茎秆匍匐有关的生物力学测量结果的影响。","authors":"Kaitlin Tabaracci, Jacques Vos, Daniel J Robertson","doi":"10.1186/s13007-024-01253-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Stalk lodging (the premature breaking of plant stalks or stems prior to harvest) is a persistent agricultural problem that causes billions of dollars in lost yield every year. Three-point bending tests, and rind puncture tests are common biomechanical measurements utilized to investigate crops susceptibility to lodging. However, the effect of testing rate on these biomechanical measurements is not well understood. In general, biological specimens (including plant stems) are well known to exhibit viscoelastic mechanical properties, thus their mechanical response is dependent upon the rate at which they are deflected. However, there is very little information in the literature regarding the effect of testing rate (aka displacement rate) on flexural stiffness, bending strength and rind puncture measurements of plant stems.</p><p><strong>Results: </strong>Fully mature and senesced maize stems and wheat stems were tested in three-point bending at various rates. Maize stems were also subjected to rind penetration tests at various rates. Testing rate had a small effect on flexural stiffness and bending strength calculations obtained from three-point bending tests. Rind puncture measurements exhibited strong rate dependent effects. As puncture rate increased, puncture force decreased. This was unexpected as viscoelastic materials typically show an increase in resistive force when rate is increased.</p><p><strong>Conclusions: </strong>Testing rate influenced three-point bending test results and rind puncture measurements of fully mature and dry plant stems. In green stems these effects are expected to be even larger. When conducting biomechanical tests of plant stems it is important to utilize consistent span lengths and displacement rates within a study. Ideally samples should be tested at a rate similar to what they would experience in-vivo.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"125"},"PeriodicalIF":4.7000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11323486/pdf/","citationCount":"0","resultStr":"{\"title\":\"The effect of testing rate on biomechanical measurements related to stalk lodging.\",\"authors\":\"Kaitlin Tabaracci, Jacques Vos, Daniel J Robertson\",\"doi\":\"10.1186/s13007-024-01253-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Stalk lodging (the premature breaking of plant stalks or stems prior to harvest) is a persistent agricultural problem that causes billions of dollars in lost yield every year. Three-point bending tests, and rind puncture tests are common biomechanical measurements utilized to investigate crops susceptibility to lodging. However, the effect of testing rate on these biomechanical measurements is not well understood. In general, biological specimens (including plant stems) are well known to exhibit viscoelastic mechanical properties, thus their mechanical response is dependent upon the rate at which they are deflected. However, there is very little information in the literature regarding the effect of testing rate (aka displacement rate) on flexural stiffness, bending strength and rind puncture measurements of plant stems.</p><p><strong>Results: </strong>Fully mature and senesced maize stems and wheat stems were tested in three-point bending at various rates. Maize stems were also subjected to rind penetration tests at various rates. Testing rate had a small effect on flexural stiffness and bending strength calculations obtained from three-point bending tests. Rind puncture measurements exhibited strong rate dependent effects. As puncture rate increased, puncture force decreased. This was unexpected as viscoelastic materials typically show an increase in resistive force when rate is increased.</p><p><strong>Conclusions: </strong>Testing rate influenced three-point bending test results and rind puncture measurements of fully mature and dry plant stems. In green stems these effects are expected to be even larger. When conducting biomechanical tests of plant stems it is important to utilize consistent span lengths and displacement rates within a study. Ideally samples should be tested at a rate similar to what they would experience in-vivo.</p>\",\"PeriodicalId\":20100,\"journal\":{\"name\":\"Plant Methods\",\"volume\":\"20 1\",\"pages\":\"125\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11323486/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13007-024-01253-9\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-024-01253-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
The effect of testing rate on biomechanical measurements related to stalk lodging.
Background: Stalk lodging (the premature breaking of plant stalks or stems prior to harvest) is a persistent agricultural problem that causes billions of dollars in lost yield every year. Three-point bending tests, and rind puncture tests are common biomechanical measurements utilized to investigate crops susceptibility to lodging. However, the effect of testing rate on these biomechanical measurements is not well understood. In general, biological specimens (including plant stems) are well known to exhibit viscoelastic mechanical properties, thus their mechanical response is dependent upon the rate at which they are deflected. However, there is very little information in the literature regarding the effect of testing rate (aka displacement rate) on flexural stiffness, bending strength and rind puncture measurements of plant stems.
Results: Fully mature and senesced maize stems and wheat stems were tested in three-point bending at various rates. Maize stems were also subjected to rind penetration tests at various rates. Testing rate had a small effect on flexural stiffness and bending strength calculations obtained from three-point bending tests. Rind puncture measurements exhibited strong rate dependent effects. As puncture rate increased, puncture force decreased. This was unexpected as viscoelastic materials typically show an increase in resistive force when rate is increased.
Conclusions: Testing rate influenced three-point bending test results and rind puncture measurements of fully mature and dry plant stems. In green stems these effects are expected to be even larger. When conducting biomechanical tests of plant stems it is important to utilize consistent span lengths and displacement rates within a study. Ideally samples should be tested at a rate similar to what they would experience in-vivo.
期刊介绍:
Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences.
There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics.
Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.