药效学中扩展 Sigmoid Emax 模型的建立与验证

IF 3.5 3区 医学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Pharmaceutical Research Pub Date : 2024-09-01 Epub Date: 2024-08-14 DOI:10.1007/s11095-024-03752-9
Jong Hyuk Byun
{"title":"药效学中扩展 Sigmoid Emax 模型的建立与验证","authors":"Jong Hyuk Byun","doi":"10.1007/s11095-024-03752-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose or objective: </strong>Drug concentration-response curves (DRCs) are crucial in pharmacology for assessing the drug effects on biological systems. The widely used sigmoid Emax model, which accounts for response saturation, relies heavily on the effective drug concentration ( <math><mrow><mi>E</mi> <msub><mi>D</mi> <mn>50</mn></msub> </mrow> </math> ). This reliance can lead to validation errors and inaccuracies in model fitting. The Emax model cannot generate multiple DRCs, raising concerns about whether the dataset is fully utilized.</p><p><strong>Methods: </strong>This study formulates an extended Emax (eEmax) model designed to overcome these limitations. The eEmax model generates multiple DRCs from a single dataset by using various estimated <math> <mrow> <msup><mrow><mi>α</mi></mrow> <mo>'</mo></msup> <mtext>s</mtext> <mo>∈</mo> <mfenced><mtext>0,100</mtext></mfenced> </mrow> </math> , while keeping <math><mrow><mi>E</mi> <msub><mi>D</mi> <mi>α</mi></msub> </mrow> </math> fixed, rather than estimating an <math><mrow><mi>E</mi> <msub><mi>D</mi> <mn>50</mn></msub> </mrow> </math> value as in the Emax model.</p><p><strong>Results: </strong>This model effectively captures a broader range of concentration-response behavior, including non-sigmoidal patterns, thus providing greater flexibility and accuracy compared to the Emax model. Validation using various drug-response data and PKPD frameworks demonstrates the eEmax model's improved accuracy and versatility in handling concentration-response data.</p><p><strong>Conclusions: </strong>The eEmax model provides a robust and flexible method for drug concentration-response analysis, facilitating the generation of multiple DRCs from a single dataset and reducing the possibility of validation errors. This model is particularly valuable for its ease of use and its capability to fully utilize datasets, providing its potential in PKPD modeling and drug discovery.</p>","PeriodicalId":20027,"journal":{"name":"Pharmaceutical Research","volume":" ","pages":"1787-1795"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formulation and Validation of an Extended Sigmoid Emax Model in Pharmacodynamics.\",\"authors\":\"Jong Hyuk Byun\",\"doi\":\"10.1007/s11095-024-03752-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose or objective: </strong>Drug concentration-response curves (DRCs) are crucial in pharmacology for assessing the drug effects on biological systems. The widely used sigmoid Emax model, which accounts for response saturation, relies heavily on the effective drug concentration ( <math><mrow><mi>E</mi> <msub><mi>D</mi> <mn>50</mn></msub> </mrow> </math> ). This reliance can lead to validation errors and inaccuracies in model fitting. The Emax model cannot generate multiple DRCs, raising concerns about whether the dataset is fully utilized.</p><p><strong>Methods: </strong>This study formulates an extended Emax (eEmax) model designed to overcome these limitations. The eEmax model generates multiple DRCs from a single dataset by using various estimated <math> <mrow> <msup><mrow><mi>α</mi></mrow> <mo>'</mo></msup> <mtext>s</mtext> <mo>∈</mo> <mfenced><mtext>0,100</mtext></mfenced> </mrow> </math> , while keeping <math><mrow><mi>E</mi> <msub><mi>D</mi> <mi>α</mi></msub> </mrow> </math> fixed, rather than estimating an <math><mrow><mi>E</mi> <msub><mi>D</mi> <mn>50</mn></msub> </mrow> </math> value as in the Emax model.</p><p><strong>Results: </strong>This model effectively captures a broader range of concentration-response behavior, including non-sigmoidal patterns, thus providing greater flexibility and accuracy compared to the Emax model. Validation using various drug-response data and PKPD frameworks demonstrates the eEmax model's improved accuracy and versatility in handling concentration-response data.</p><p><strong>Conclusions: </strong>The eEmax model provides a robust and flexible method for drug concentration-response analysis, facilitating the generation of multiple DRCs from a single dataset and reducing the possibility of validation errors. This model is particularly valuable for its ease of use and its capability to fully utilize datasets, providing its potential in PKPD modeling and drug discovery.</p>\",\"PeriodicalId\":20027,\"journal\":{\"name\":\"Pharmaceutical Research\",\"volume\":\" \",\"pages\":\"1787-1795\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11095-024-03752-9\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11095-024-03752-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

目的或目标:药物浓度-反应曲线(DRC)是药理学评估药物对生物系统影响的关键。广泛使用的 Sigmoid Emax 模型考虑到了反应饱和度,在很大程度上依赖于有效药物浓度(E D 50)。这种依赖会导致验证错误和模型拟合不准确。Emax 模型无法生成多个 DRC,从而引发了对数据集是否得到充分利用的担忧:本研究制定了一个扩展的 Emax(eEmax)模型,旨在克服这些局限性。eEmax 模型通过使用不同的估计值 α ' s ∈ 0,100 从单一数据集生成多个 DRC,同时保持 E D α 固定不变,而不是像 Emax 模型那样估计一个 E D 50 值:结果:与 Emax 模型相比,该模型能有效捕捉更广泛的浓度-反应行为,包括非曲线模式,因此具有更大的灵活性和准确性。使用各种药物反应数据和 PKPD 框架进行的验证表明,eEmax 模型在处理浓度反应数据方面具有更高的准确性和多功能性:eEmax 模型为药物浓度-反应分析提供了一种稳健而灵活的方法,有助于从单一数据集生成多个 DRC,并减少验证错误的可能性。该模型因其易用性和充分利用数据集的能力而特别有价值,为 PKPD 建模和药物发现提供了潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Formulation and Validation of an Extended Sigmoid Emax Model in Pharmacodynamics.

Formulation and Validation of an Extended Sigmoid Emax Model in Pharmacodynamics.

Purpose or objective: Drug concentration-response curves (DRCs) are crucial in pharmacology for assessing the drug effects on biological systems. The widely used sigmoid Emax model, which accounts for response saturation, relies heavily on the effective drug concentration ( E D 50 ). This reliance can lead to validation errors and inaccuracies in model fitting. The Emax model cannot generate multiple DRCs, raising concerns about whether the dataset is fully utilized.

Methods: This study formulates an extended Emax (eEmax) model designed to overcome these limitations. The eEmax model generates multiple DRCs from a single dataset by using various estimated α ' s 0,100 , while keeping E D α fixed, rather than estimating an E D 50 value as in the Emax model.

Results: This model effectively captures a broader range of concentration-response behavior, including non-sigmoidal patterns, thus providing greater flexibility and accuracy compared to the Emax model. Validation using various drug-response data and PKPD frameworks demonstrates the eEmax model's improved accuracy and versatility in handling concentration-response data.

Conclusions: The eEmax model provides a robust and flexible method for drug concentration-response analysis, facilitating the generation of multiple DRCs from a single dataset and reducing the possibility of validation errors. This model is particularly valuable for its ease of use and its capability to fully utilize datasets, providing its potential in PKPD modeling and drug discovery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pharmaceutical Research
Pharmaceutical Research 医学-化学综合
CiteScore
6.60
自引率
5.40%
发文量
276
审稿时长
3.4 months
期刊介绍: Pharmaceutical Research, an official journal of the American Association of Pharmaceutical Scientists, is committed to publishing novel research that is mechanism-based, hypothesis-driven and addresses significant issues in drug discovery, development and regulation. Current areas of interest include, but are not limited to: -(pre)formulation engineering and processing- computational biopharmaceutics- drug delivery and targeting- molecular biopharmaceutics and drug disposition (including cellular and molecular pharmacology)- pharmacokinetics, pharmacodynamics and pharmacogenetics. Research may involve nonclinical and clinical studies, and utilize both in vitro and in vivo approaches. Studies on small drug molecules, pharmaceutical solid materials (including biomaterials, polymers and nanoparticles) biotechnology products (including genes, peptides, proteins and vaccines), and genetically engineered cells are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信