{"title":"药效学中扩展 Sigmoid Emax 模型的建立与验证","authors":"Jong Hyuk Byun","doi":"10.1007/s11095-024-03752-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose or objective: </strong>Drug concentration-response curves (DRCs) are crucial in pharmacology for assessing the drug effects on biological systems. The widely used sigmoid Emax model, which accounts for response saturation, relies heavily on the effective drug concentration ( <math><mrow><mi>E</mi> <msub><mi>D</mi> <mn>50</mn></msub> </mrow> </math> ). This reliance can lead to validation errors and inaccuracies in model fitting. The Emax model cannot generate multiple DRCs, raising concerns about whether the dataset is fully utilized.</p><p><strong>Methods: </strong>This study formulates an extended Emax (eEmax) model designed to overcome these limitations. The eEmax model generates multiple DRCs from a single dataset by using various estimated <math> <mrow> <msup><mrow><mi>α</mi></mrow> <mo>'</mo></msup> <mtext>s</mtext> <mo>∈</mo> <mfenced><mtext>0,100</mtext></mfenced> </mrow> </math> , while keeping <math><mrow><mi>E</mi> <msub><mi>D</mi> <mi>α</mi></msub> </mrow> </math> fixed, rather than estimating an <math><mrow><mi>E</mi> <msub><mi>D</mi> <mn>50</mn></msub> </mrow> </math> value as in the Emax model.</p><p><strong>Results: </strong>This model effectively captures a broader range of concentration-response behavior, including non-sigmoidal patterns, thus providing greater flexibility and accuracy compared to the Emax model. Validation using various drug-response data and PKPD frameworks demonstrates the eEmax model's improved accuracy and versatility in handling concentration-response data.</p><p><strong>Conclusions: </strong>The eEmax model provides a robust and flexible method for drug concentration-response analysis, facilitating the generation of multiple DRCs from a single dataset and reducing the possibility of validation errors. This model is particularly valuable for its ease of use and its capability to fully utilize datasets, providing its potential in PKPD modeling and drug discovery.</p>","PeriodicalId":20027,"journal":{"name":"Pharmaceutical Research","volume":" ","pages":"1787-1795"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formulation and Validation of an Extended Sigmoid Emax Model in Pharmacodynamics.\",\"authors\":\"Jong Hyuk Byun\",\"doi\":\"10.1007/s11095-024-03752-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose or objective: </strong>Drug concentration-response curves (DRCs) are crucial in pharmacology for assessing the drug effects on biological systems. The widely used sigmoid Emax model, which accounts for response saturation, relies heavily on the effective drug concentration ( <math><mrow><mi>E</mi> <msub><mi>D</mi> <mn>50</mn></msub> </mrow> </math> ). This reliance can lead to validation errors and inaccuracies in model fitting. The Emax model cannot generate multiple DRCs, raising concerns about whether the dataset is fully utilized.</p><p><strong>Methods: </strong>This study formulates an extended Emax (eEmax) model designed to overcome these limitations. The eEmax model generates multiple DRCs from a single dataset by using various estimated <math> <mrow> <msup><mrow><mi>α</mi></mrow> <mo>'</mo></msup> <mtext>s</mtext> <mo>∈</mo> <mfenced><mtext>0,100</mtext></mfenced> </mrow> </math> , while keeping <math><mrow><mi>E</mi> <msub><mi>D</mi> <mi>α</mi></msub> </mrow> </math> fixed, rather than estimating an <math><mrow><mi>E</mi> <msub><mi>D</mi> <mn>50</mn></msub> </mrow> </math> value as in the Emax model.</p><p><strong>Results: </strong>This model effectively captures a broader range of concentration-response behavior, including non-sigmoidal patterns, thus providing greater flexibility and accuracy compared to the Emax model. Validation using various drug-response data and PKPD frameworks demonstrates the eEmax model's improved accuracy and versatility in handling concentration-response data.</p><p><strong>Conclusions: </strong>The eEmax model provides a robust and flexible method for drug concentration-response analysis, facilitating the generation of multiple DRCs from a single dataset and reducing the possibility of validation errors. This model is particularly valuable for its ease of use and its capability to fully utilize datasets, providing its potential in PKPD modeling and drug discovery.</p>\",\"PeriodicalId\":20027,\"journal\":{\"name\":\"Pharmaceutical Research\",\"volume\":\" \",\"pages\":\"1787-1795\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11095-024-03752-9\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11095-024-03752-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
目的或目标:药物浓度-反应曲线(DRC)是药理学评估药物对生物系统影响的关键。广泛使用的 Sigmoid Emax 模型考虑到了反应饱和度,在很大程度上依赖于有效药物浓度(E D 50)。这种依赖会导致验证错误和模型拟合不准确。Emax 模型无法生成多个 DRC,从而引发了对数据集是否得到充分利用的担忧:本研究制定了一个扩展的 Emax(eEmax)模型,旨在克服这些局限性。eEmax 模型通过使用不同的估计值 α ' s ∈ 0,100 从单一数据集生成多个 DRC,同时保持 E D α 固定不变,而不是像 Emax 模型那样估计一个 E D 50 值:结果:与 Emax 模型相比,该模型能有效捕捉更广泛的浓度-反应行为,包括非曲线模式,因此具有更大的灵活性和准确性。使用各种药物反应数据和 PKPD 框架进行的验证表明,eEmax 模型在处理浓度反应数据方面具有更高的准确性和多功能性:eEmax 模型为药物浓度-反应分析提供了一种稳健而灵活的方法,有助于从单一数据集生成多个 DRC,并减少验证错误的可能性。该模型因其易用性和充分利用数据集的能力而特别有价值,为 PKPD 建模和药物发现提供了潜力。
Formulation and Validation of an Extended Sigmoid Emax Model in Pharmacodynamics.
Purpose or objective: Drug concentration-response curves (DRCs) are crucial in pharmacology for assessing the drug effects on biological systems. The widely used sigmoid Emax model, which accounts for response saturation, relies heavily on the effective drug concentration ( ). This reliance can lead to validation errors and inaccuracies in model fitting. The Emax model cannot generate multiple DRCs, raising concerns about whether the dataset is fully utilized.
Methods: This study formulates an extended Emax (eEmax) model designed to overcome these limitations. The eEmax model generates multiple DRCs from a single dataset by using various estimated , while keeping fixed, rather than estimating an value as in the Emax model.
Results: This model effectively captures a broader range of concentration-response behavior, including non-sigmoidal patterns, thus providing greater flexibility and accuracy compared to the Emax model. Validation using various drug-response data and PKPD frameworks demonstrates the eEmax model's improved accuracy and versatility in handling concentration-response data.
Conclusions: The eEmax model provides a robust and flexible method for drug concentration-response analysis, facilitating the generation of multiple DRCs from a single dataset and reducing the possibility of validation errors. This model is particularly valuable for its ease of use and its capability to fully utilize datasets, providing its potential in PKPD modeling and drug discovery.
期刊介绍:
Pharmaceutical Research, an official journal of the American Association of Pharmaceutical Scientists, is committed to publishing novel research that is mechanism-based, hypothesis-driven and addresses significant issues in drug discovery, development and regulation. Current areas of interest include, but are not limited to:
-(pre)formulation engineering and processing-
computational biopharmaceutics-
drug delivery and targeting-
molecular biopharmaceutics and drug disposition (including cellular and molecular pharmacology)-
pharmacokinetics, pharmacodynamics and pharmacogenetics.
Research may involve nonclinical and clinical studies, and utilize both in vitro and in vivo approaches. Studies on small drug molecules, pharmaceutical solid materials (including biomaterials, polymers and nanoparticles) biotechnology products (including genes, peptides, proteins and vaccines), and genetically engineered cells are welcome.