机械传导中的争议:内皮细胞-细胞连接在流体剪切应力传感中的作用。

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
ACS Applied Electronic Materials Pub Date : 2024-09-01 Epub Date: 2024-09-09 DOI:10.1242/jcs.262348
Shaka X, Claire Aitken, Vedanta Mehta, Blanca Tardajos-Ayllon, Jovana Serbanovic-Canic, Jiayu Zhu, Bernadette Miao, Ellie Tzima, Paul Evans, Yun Fang, Martin A Schwartz
{"title":"机械传导中的争议:内皮细胞-细胞连接在流体剪切应力传感中的作用。","authors":"Shaka X, Claire Aitken, Vedanta Mehta, Blanca Tardajos-Ayllon, Jovana Serbanovic-Canic, Jiayu Zhu, Bernadette Miao, Ellie Tzima, Paul Evans, Yun Fang, Martin A Schwartz","doi":"10.1242/jcs.262348","DOIUrl":null,"url":null,"abstract":"<p><p>Fluid shear stress (FSS) from blood flow, sensed by the vascular endothelial cells (ECs) that line all blood vessels, regulates vascular development during embryogenesis, controls adult vascular physiology and determines the location of atherosclerotic plaque formation. Although a number of papers have reported a crucial role for cell-cell adhesions or adhesion receptors in these processes, a recent publication has challenged this paradigm, presenting evidence that ECs can very rapidly align in fluid flow as single cells without cell-cell contacts. To address this controversy, four independent laboratories assessed EC alignment in fluid flow across a range of EC cell types. These studies demonstrate a strict requirement for cell-cell contact in shear stress sensing over timescales consistent with previous literature and inconsistent with the newly published data.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11423816/pdf/","citationCount":"0","resultStr":"{\"title\":\"Controversy in mechanotransduction - the role of endothelial cell-cell junctions in fluid shear stress sensing.\",\"authors\":\"Shaka X, Claire Aitken, Vedanta Mehta, Blanca Tardajos-Ayllon, Jovana Serbanovic-Canic, Jiayu Zhu, Bernadette Miao, Ellie Tzima, Paul Evans, Yun Fang, Martin A Schwartz\",\"doi\":\"10.1242/jcs.262348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fluid shear stress (FSS) from blood flow, sensed by the vascular endothelial cells (ECs) that line all blood vessels, regulates vascular development during embryogenesis, controls adult vascular physiology and determines the location of atherosclerotic plaque formation. Although a number of papers have reported a crucial role for cell-cell adhesions or adhesion receptors in these processes, a recent publication has challenged this paradigm, presenting evidence that ECs can very rapidly align in fluid flow as single cells without cell-cell contacts. To address this controversy, four independent laboratories assessed EC alignment in fluid flow across a range of EC cell types. These studies demonstrate a strict requirement for cell-cell contact in shear stress sensing over timescales consistent with previous literature and inconsistent with the newly published data.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11423816/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/jcs.262348\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jcs.262348","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

所有血管中的血管内皮细胞(ECs)都能感受到血流产生的流体剪切应力(FSS),它能调节胚胎发育过程中的血管发育,控制成人血管的生理机能,并决定动脉粥样硬化斑块形成的位置。虽然有许多论文报道了细胞-细胞粘附或粘附受体在这些过程中的关键作用,但最近发表的一篇文章对这一范式提出了挑战,它提出的证据表明,在没有细胞-细胞接触的情况下,ECs 可以作为单细胞在流体流动中快速排列。为了解决这一争议,四个独立的实验室评估了一系列 EC 细胞类型的 EC 在流体流动中的排列。这些研究表明,在剪切应力传感过程中,对细胞-细胞接触的严格要求在时间尺度上与之前的文献一致,而与新发表的数据不一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Controversy in mechanotransduction - the role of endothelial cell-cell junctions in fluid shear stress sensing.

Fluid shear stress (FSS) from blood flow, sensed by the vascular endothelial cells (ECs) that line all blood vessels, regulates vascular development during embryogenesis, controls adult vascular physiology and determines the location of atherosclerotic plaque formation. Although a number of papers have reported a crucial role for cell-cell adhesions or adhesion receptors in these processes, a recent publication has challenged this paradigm, presenting evidence that ECs can very rapidly align in fluid flow as single cells without cell-cell contacts. To address this controversy, four independent laboratories assessed EC alignment in fluid flow across a range of EC cell types. These studies demonstrate a strict requirement for cell-cell contact in shear stress sensing over timescales consistent with previous literature and inconsistent with the newly published data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信