鸢尾素通过调节miR-19b-3p/SOCS3/STAT3轴介导的自噬作用抑制NLRP3炎症小体,从而缓解T2DM中β细胞的脓毒症。

IF 3.7 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
IUBMB Life Pub Date : 2024-08-15 DOI:10.1002/iub.2907
Jingjing Yang, Anjun Tan, Tianrong Li, Hewen Chen
{"title":"鸢尾素通过调节miR-19b-3p/SOCS3/STAT3轴介导的自噬作用抑制NLRP3炎症小体,从而缓解T2DM中β细胞的脓毒症。","authors":"Jingjing Yang, Anjun Tan, Tianrong Li, Hewen Chen","doi":"10.1002/iub.2907","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this study was to analyze the mechanism by which irisin affects β-cell pyroptosis in type 2 diabetes mellitus (T2DM). The in vivo T2DM model was established by raised with high-fat diet and intraperitoneally injection of streptozocin. Min6 cells were divided into four groups: negative control (NC), high glucose (HG), HG + irisin, and HG + irisin+3-MA. The cell viability was determined by CCK-8 assay. Dual-luciferase gene reporter assay was conducted to confirm the binding between miR-19b-3p and SOCS3. The expression level of FNDC5 and GSDMD was visualized using the immunofluorescence assay. The protein level of FNDC5, Beclin1, LC3II/I, NLRP3, cleaved-caspase-1, GSDMD-N, STAT3, p-STAT3, and SOCS3 was determined by Western blotting. The secretion of irisin, lactate dehydrogenase (LDH), and insulin was checked by ELISA. In vivo results showed that pathological changes in islet tissues with declined number of β cells, elevated FBG value, decreased FIN and HOMA-β value, elevated autophagy-associated proteins expressions, and activated NLRP3 signaling in T2DM mice, which were dramatically reversed by FNDC5 overexpression. Furthermore, the declined level of miR-19b-3p and p-STAT3, as well as the upregulation of SOCS3, was greatly rescued by FNDC5 overexpression. The in vitro data confirmed the binding site between SOCS3 and miR-19b-3p. SOCS3 was downregulated and p-STAT3 was upregulated in miR-19b-3p mimic-treated Min6 cells. In HG-stimulated Min6 cells, the elevated cell viability, increased production of insulin, decreased release of LDH, and inactivated NLRP3 signaling induced by irisin were abolished by miR-19b-3p inhibitor and STAT3 inhibitor. The increased level of autophagy-related proteins and activated SOCS3/STAT3 axis induced by irisin in HG-stimulated Min6 cells were abolished by miR-19b-3p inhibitor. The inhibitory effect of irisin against NLRP3 signaling in HG-stimulated Min6 cells was abrogated by 3-MA. In conclusion, irisin alleviated the pyroptosis of β cells in T2DM by inhibiting NLRP3 signaling through miR-19b-3p/SOCS3/STAT3 axis mediated autophagy.</p>","PeriodicalId":14728,"journal":{"name":"IUBMB Life","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Irisin alleviates the pyroptosis of β cells in T2DM by inhibiting NLRP3 inflammasome through regulating miR-19b-3p/SOCS3/STAT3 axis mediated autophagy.\",\"authors\":\"Jingjing Yang, Anjun Tan, Tianrong Li, Hewen Chen\",\"doi\":\"10.1002/iub.2907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The purpose of this study was to analyze the mechanism by which irisin affects β-cell pyroptosis in type 2 diabetes mellitus (T2DM). The in vivo T2DM model was established by raised with high-fat diet and intraperitoneally injection of streptozocin. Min6 cells were divided into four groups: negative control (NC), high glucose (HG), HG + irisin, and HG + irisin+3-MA. The cell viability was determined by CCK-8 assay. Dual-luciferase gene reporter assay was conducted to confirm the binding between miR-19b-3p and SOCS3. The expression level of FNDC5 and GSDMD was visualized using the immunofluorescence assay. The protein level of FNDC5, Beclin1, LC3II/I, NLRP3, cleaved-caspase-1, GSDMD-N, STAT3, p-STAT3, and SOCS3 was determined by Western blotting. The secretion of irisin, lactate dehydrogenase (LDH), and insulin was checked by ELISA. In vivo results showed that pathological changes in islet tissues with declined number of β cells, elevated FBG value, decreased FIN and HOMA-β value, elevated autophagy-associated proteins expressions, and activated NLRP3 signaling in T2DM mice, which were dramatically reversed by FNDC5 overexpression. Furthermore, the declined level of miR-19b-3p and p-STAT3, as well as the upregulation of SOCS3, was greatly rescued by FNDC5 overexpression. The in vitro data confirmed the binding site between SOCS3 and miR-19b-3p. SOCS3 was downregulated and p-STAT3 was upregulated in miR-19b-3p mimic-treated Min6 cells. In HG-stimulated Min6 cells, the elevated cell viability, increased production of insulin, decreased release of LDH, and inactivated NLRP3 signaling induced by irisin were abolished by miR-19b-3p inhibitor and STAT3 inhibitor. The increased level of autophagy-related proteins and activated SOCS3/STAT3 axis induced by irisin in HG-stimulated Min6 cells were abolished by miR-19b-3p inhibitor. The inhibitory effect of irisin against NLRP3 signaling in HG-stimulated Min6 cells was abrogated by 3-MA. In conclusion, irisin alleviated the pyroptosis of β cells in T2DM by inhibiting NLRP3 signaling through miR-19b-3p/SOCS3/STAT3 axis mediated autophagy.</p>\",\"PeriodicalId\":14728,\"journal\":{\"name\":\"IUBMB Life\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IUBMB Life\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/iub.2907\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IUBMB Life","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/iub.2907","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在分析鸢尾素影响2型糖尿病(T2DM)β细胞热解的机制。通过高脂饮食和腹腔注射链脲佐辛来建立体内T2DM模型。Min6 细胞分为四组:阴性对照组(NC)、高糖组(HG)、HG + 虹膜素组和 HG + 虹膜素 + 3-MA 组。细胞活力通过 CCK-8 法测定。双荧光素酶基因报告实验证实了 miR-19b-3p 与 SOCS3 的结合。采用免疫荧光检测法观察 FNDC5 和 GSDMD 的表达水平。采用 Western 印迹法测定了 FNDC5、Beclin1、LC3II/I、NLRP3、cleaved-caspase-1、GSDMD-N、STAT3、p-STAT3 和 SOCS3 的蛋白水平。酶联免疫吸附法检测了鸢尾素、乳酸脱氢酶(LDH)和胰岛素的分泌情况。体内研究结果表明,T2DM小鼠的胰岛组织发生了病理变化,β细胞数量减少、FBG值升高、FIN和HOMA-β值降低、自噬相关蛋白表达升高、NLRP3信号激活。此外,FNDC5 的过表达还大大缓解了 miR-19b-3p 和 p-STAT3 水平的下降以及 SOCS3 的上调。体外数据证实了 SOCS3 与 miR-19b-3p 的结合位点。在 miR-19b-3p 模拟处理的 Min6 细胞中,SOCS3 下调,p-STAT3 上调。在 HG 刺激的 Min6 细胞中,miR-19b-3p 抑制剂和 STAT3 抑制剂能抑制鸢尾素诱导的细胞活力升高、胰岛素分泌增加、LDH 释放减少和 NLRP3 信号失活。miR-19b-3p 抑制剂抑制了鸢尾素诱导的 HG 刺激 Min6 细胞自噬相关蛋白水平的升高和 SOCS3/STAT3 轴的激活。鸢尾素对 HG 刺激的 Min6 细胞中 NLRP3 信号转导的抑制作用被 3-MA 削弱。总之,鸢尾素通过miR-19b-3p/SOCS3/STAT3轴介导的自噬作用抑制NLRP3信号传导,从而缓解了T2DM中β细胞的脓毒症。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Irisin alleviates the pyroptosis of β cells in T2DM by inhibiting NLRP3 inflammasome through regulating miR-19b-3p/SOCS3/STAT3 axis mediated autophagy.

The purpose of this study was to analyze the mechanism by which irisin affects β-cell pyroptosis in type 2 diabetes mellitus (T2DM). The in vivo T2DM model was established by raised with high-fat diet and intraperitoneally injection of streptozocin. Min6 cells were divided into four groups: negative control (NC), high glucose (HG), HG + irisin, and HG + irisin+3-MA. The cell viability was determined by CCK-8 assay. Dual-luciferase gene reporter assay was conducted to confirm the binding between miR-19b-3p and SOCS3. The expression level of FNDC5 and GSDMD was visualized using the immunofluorescence assay. The protein level of FNDC5, Beclin1, LC3II/I, NLRP3, cleaved-caspase-1, GSDMD-N, STAT3, p-STAT3, and SOCS3 was determined by Western blotting. The secretion of irisin, lactate dehydrogenase (LDH), and insulin was checked by ELISA. In vivo results showed that pathological changes in islet tissues with declined number of β cells, elevated FBG value, decreased FIN and HOMA-β value, elevated autophagy-associated proteins expressions, and activated NLRP3 signaling in T2DM mice, which were dramatically reversed by FNDC5 overexpression. Furthermore, the declined level of miR-19b-3p and p-STAT3, as well as the upregulation of SOCS3, was greatly rescued by FNDC5 overexpression. The in vitro data confirmed the binding site between SOCS3 and miR-19b-3p. SOCS3 was downregulated and p-STAT3 was upregulated in miR-19b-3p mimic-treated Min6 cells. In HG-stimulated Min6 cells, the elevated cell viability, increased production of insulin, decreased release of LDH, and inactivated NLRP3 signaling induced by irisin were abolished by miR-19b-3p inhibitor and STAT3 inhibitor. The increased level of autophagy-related proteins and activated SOCS3/STAT3 axis induced by irisin in HG-stimulated Min6 cells were abolished by miR-19b-3p inhibitor. The inhibitory effect of irisin against NLRP3 signaling in HG-stimulated Min6 cells was abrogated by 3-MA. In conclusion, irisin alleviated the pyroptosis of β cells in T2DM by inhibiting NLRP3 signaling through miR-19b-3p/SOCS3/STAT3 axis mediated autophagy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IUBMB Life
IUBMB Life 生物-生化与分子生物学
CiteScore
10.60
自引率
0.00%
发文量
109
审稿时长
4-8 weeks
期刊介绍: IUBMB Life is the flagship journal of the International Union of Biochemistry and Molecular Biology and is devoted to the rapid publication of the most novel and significant original research articles, reviews, and hypotheses in the broadly defined fields of biochemistry, molecular biology, cell biology, and molecular medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信