{"title":"耐多粘菌素碳青霉烯类抗生素肺炎克雷伯氏菌的高流行率及其在重症患者中的耐药性演变。","authors":"Xiaoli Wang, Tianjiao Meng, Yunqi Dai, Hong-Yu Ou, Meng Wang, Bin Tang, Jingyong Sun, Decui Cheng, Tingting Pan, Ruoming Tan, Hongping Qu","doi":"10.1007/s15010-024-02365-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>We aimed to explore the prevalence and within-host evolution of resistance in polymyxin-heteroresistant carbapenem-resistant Klebsiella pneumoniae (PHR-CRKP) in critically ill patients.</p><p><strong>Methods: </strong>We performed an epidemiological analysis of consecutive patients with PHR-CRKP from clinical cases. Our study investigated the within-host resistance evolution and its clinical significance during polymyxin exposure. Furthermore, we explored the mechanisms underlying the dynamic evolution of polymyxin resistance at both subpopulation and genetic levels, involved population analysis profile test, time-killing assays, competition experiments, and sanger sequencing. Additionally, comparative genomic analysis was performed on 713 carbapenemase-producing K. pneumoniae strains.</p><p><strong>Results: </strong>We enrolled 109 consecutive patients, and PHR-CRKP was found in 69.7% of patients without previous polymyxin exposure. 38.1% of PHR-CRKP isolates exhibited polymyxin resistance and led to therapeutic failure in critically ill scenarios. An increased frequency of resistant subpopulations was detected during PHR-CRKP evolution, with rapid regrowth of resistant subpopulations under high polymyxin concentrations, and a fitness cost in an antibiotic-free environment. Mechanistic analysis revealed that diverse mgrB insertions and pmrB hypermutations contributed to the dynamic changes in polymyxin susceptibility in dominant resistant subpopulations during PHR evolution, which were validated by comparative genomic analysis. Several deleterious mutations (e.g. pmrB<sup>Leu82Arg</sup>, pmrB<sup>Ser85Arg</sup>) were firstly detected during PHR-CRKP evolution. Indeed, specific sequence types of K. pneumoniae demonstrated unique deletions and deleterious mutations.</p><p><strong>Conclusions: </strong>Our study emphasizes the high prevalence of pre-existing heteroresistance in CRKP, which can lead to polymyxin resistance and fatal outcomes. Hence, it is essential to continuously monitor and observe the treatment response to polymyxins in appropriate critically ill scenarios.</p>","PeriodicalId":13600,"journal":{"name":"Infection","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High prevalence of polymyxin-heteroresistant carbapenem-resistant Klebsiella pneumoniae and its within-host evolution to resistance among critically ill scenarios.\",\"authors\":\"Xiaoli Wang, Tianjiao Meng, Yunqi Dai, Hong-Yu Ou, Meng Wang, Bin Tang, Jingyong Sun, Decui Cheng, Tingting Pan, Ruoming Tan, Hongping Qu\",\"doi\":\"10.1007/s15010-024-02365-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>We aimed to explore the prevalence and within-host evolution of resistance in polymyxin-heteroresistant carbapenem-resistant Klebsiella pneumoniae (PHR-CRKP) in critically ill patients.</p><p><strong>Methods: </strong>We performed an epidemiological analysis of consecutive patients with PHR-CRKP from clinical cases. Our study investigated the within-host resistance evolution and its clinical significance during polymyxin exposure. Furthermore, we explored the mechanisms underlying the dynamic evolution of polymyxin resistance at both subpopulation and genetic levels, involved population analysis profile test, time-killing assays, competition experiments, and sanger sequencing. Additionally, comparative genomic analysis was performed on 713 carbapenemase-producing K. pneumoniae strains.</p><p><strong>Results: </strong>We enrolled 109 consecutive patients, and PHR-CRKP was found in 69.7% of patients without previous polymyxin exposure. 38.1% of PHR-CRKP isolates exhibited polymyxin resistance and led to therapeutic failure in critically ill scenarios. An increased frequency of resistant subpopulations was detected during PHR-CRKP evolution, with rapid regrowth of resistant subpopulations under high polymyxin concentrations, and a fitness cost in an antibiotic-free environment. Mechanistic analysis revealed that diverse mgrB insertions and pmrB hypermutations contributed to the dynamic changes in polymyxin susceptibility in dominant resistant subpopulations during PHR evolution, which were validated by comparative genomic analysis. Several deleterious mutations (e.g. pmrB<sup>Leu82Arg</sup>, pmrB<sup>Ser85Arg</sup>) were firstly detected during PHR-CRKP evolution. Indeed, specific sequence types of K. pneumoniae demonstrated unique deletions and deleterious mutations.</p><p><strong>Conclusions: </strong>Our study emphasizes the high prevalence of pre-existing heteroresistance in CRKP, which can lead to polymyxin resistance and fatal outcomes. Hence, it is essential to continuously monitor and observe the treatment response to polymyxins in appropriate critically ill scenarios.</p>\",\"PeriodicalId\":13600,\"journal\":{\"name\":\"Infection\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infection\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s15010-024-02365-z\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infection","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s15010-024-02365-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
High prevalence of polymyxin-heteroresistant carbapenem-resistant Klebsiella pneumoniae and its within-host evolution to resistance among critically ill scenarios.
Purpose: We aimed to explore the prevalence and within-host evolution of resistance in polymyxin-heteroresistant carbapenem-resistant Klebsiella pneumoniae (PHR-CRKP) in critically ill patients.
Methods: We performed an epidemiological analysis of consecutive patients with PHR-CRKP from clinical cases. Our study investigated the within-host resistance evolution and its clinical significance during polymyxin exposure. Furthermore, we explored the mechanisms underlying the dynamic evolution of polymyxin resistance at both subpopulation and genetic levels, involved population analysis profile test, time-killing assays, competition experiments, and sanger sequencing. Additionally, comparative genomic analysis was performed on 713 carbapenemase-producing K. pneumoniae strains.
Results: We enrolled 109 consecutive patients, and PHR-CRKP was found in 69.7% of patients without previous polymyxin exposure. 38.1% of PHR-CRKP isolates exhibited polymyxin resistance and led to therapeutic failure in critically ill scenarios. An increased frequency of resistant subpopulations was detected during PHR-CRKP evolution, with rapid regrowth of resistant subpopulations under high polymyxin concentrations, and a fitness cost in an antibiotic-free environment. Mechanistic analysis revealed that diverse mgrB insertions and pmrB hypermutations contributed to the dynamic changes in polymyxin susceptibility in dominant resistant subpopulations during PHR evolution, which were validated by comparative genomic analysis. Several deleterious mutations (e.g. pmrBLeu82Arg, pmrBSer85Arg) were firstly detected during PHR-CRKP evolution. Indeed, specific sequence types of K. pneumoniae demonstrated unique deletions and deleterious mutations.
Conclusions: Our study emphasizes the high prevalence of pre-existing heteroresistance in CRKP, which can lead to polymyxin resistance and fatal outcomes. Hence, it is essential to continuously monitor and observe the treatment response to polymyxins in appropriate critically ill scenarios.
期刊介绍:
Infection is a journal dedicated to serving as a global forum for the presentation and discussion of clinically relevant information on infectious diseases. Its primary goal is to engage readers and contributors from various regions around the world in the exchange of knowledge about the etiology, pathogenesis, diagnosis, and treatment of infectious diseases, both in outpatient and inpatient settings.
The journal covers a wide range of topics, including:
Etiology: The study of the causes of infectious diseases.
Pathogenesis: The process by which an infectious agent causes disease.
Diagnosis: The methods and techniques used to identify infectious diseases.
Treatment: The medical interventions and strategies employed to treat infectious diseases.
Public Health: Issues of local, regional, or international significance related to infectious diseases, including prevention, control, and management strategies.
Hospital Epidemiology: The study of the spread of infectious diseases within healthcare settings and the measures to prevent nosocomial infections.
In addition to these, Infection also includes a specialized "Images" section, which focuses on high-quality visual content, such as images, photographs, and microscopic slides, accompanied by brief abstracts. This section is designed to highlight the clinical and diagnostic value of visual aids in the field of infectious diseases, as many conditions present with characteristic clinical signs that can be diagnosed through inspection, and imaging and microscopy are crucial for accurate diagnosis. The journal's comprehensive approach ensures that it remains a valuable resource for healthcare professionals and researchers in the field of infectious diseases.