{"title":"以质量为导向设计开发用于皮肤靶向的脂质纳米颗粒:一种初步方法。","authors":"Viral Patel, Tejal Mehta, Jigna Shah, Kinal Soni","doi":"10.1007/s13346-024-01685-9","DOIUrl":null,"url":null,"abstract":"<p><p>Fungal infections are the fourth common cause of infection affecting around 50 million populations across the globe. Dermatophytes contribute to the majority of superficial fungal infections. Clotrimazole (CTZ), an imidazole derivative is widely preferred for the treatment of topical fungal infections. Conventional topical formulations enable effective penetration of CTZ into the stratum corneum, however, its low solubility results in poor dermal bioavailability, and variable drug levels limit the efficacy. The aim was to increase dermal bioavailability and sustain drug release, thereby potentially enhancing drug retention and reducing its side effects. This work evaluated the CTZ loaded solid lipid nanoparticles (SLN) consisting of precirol and polysorbate-80 developed using high pressure homogenization and optimized with QbD approach. Prior to release studies, CTZ-SLNs were characterized by different analytical techniques. The laser diffractometry and field emission scanning electron microscopy indicated that SLNs were spherical in shape with mean diameter of 450 ± 3.45 nm. DSC and XRD results revealed that the drug remained molecularly dispersed in the lipid matrix. The CTZ-SLNs showed no physicochemical instability during 6 months of storage at different temperatures. Further, the Carbopol with its pseudoplastic behavior showed a crucial role in forming homogenous and stable network for imbibing the CTZ-SLN dispersion for effective retention in skin. As examined, in-vitro drug release was sustained up to 24 h while ex-vivo skin retention and drug permeation studies showed the highest accumulation and lowest permeation with nanogel in comparison to pure drug and Candid<sup>®</sup> cream. Further, the in-vivo antifungal efficacy of nanogel suggested once-a-day application for 10 days, supported by histopathological analysis for complete eradication infection. In summary, the findings suggest, that nanogel-loaded with CTZ-SLNs has great potential for the management of fungal infections caused by Candida albicans.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":"1393-1410"},"PeriodicalIF":5.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quality by design driven development of lipid nanoparticles for cutaneous targeting: a preliminary approach.\",\"authors\":\"Viral Patel, Tejal Mehta, Jigna Shah, Kinal Soni\",\"doi\":\"10.1007/s13346-024-01685-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fungal infections are the fourth common cause of infection affecting around 50 million populations across the globe. Dermatophytes contribute to the majority of superficial fungal infections. Clotrimazole (CTZ), an imidazole derivative is widely preferred for the treatment of topical fungal infections. Conventional topical formulations enable effective penetration of CTZ into the stratum corneum, however, its low solubility results in poor dermal bioavailability, and variable drug levels limit the efficacy. The aim was to increase dermal bioavailability and sustain drug release, thereby potentially enhancing drug retention and reducing its side effects. This work evaluated the CTZ loaded solid lipid nanoparticles (SLN) consisting of precirol and polysorbate-80 developed using high pressure homogenization and optimized with QbD approach. Prior to release studies, CTZ-SLNs were characterized by different analytical techniques. The laser diffractometry and field emission scanning electron microscopy indicated that SLNs were spherical in shape with mean diameter of 450 ± 3.45 nm. DSC and XRD results revealed that the drug remained molecularly dispersed in the lipid matrix. The CTZ-SLNs showed no physicochemical instability during 6 months of storage at different temperatures. Further, the Carbopol with its pseudoplastic behavior showed a crucial role in forming homogenous and stable network for imbibing the CTZ-SLN dispersion for effective retention in skin. As examined, in-vitro drug release was sustained up to 24 h while ex-vivo skin retention and drug permeation studies showed the highest accumulation and lowest permeation with nanogel in comparison to pure drug and Candid<sup>®</sup> cream. Further, the in-vivo antifungal efficacy of nanogel suggested once-a-day application for 10 days, supported by histopathological analysis for complete eradication infection. In summary, the findings suggest, that nanogel-loaded with CTZ-SLNs has great potential for the management of fungal infections caused by Candida albicans.</p>\",\"PeriodicalId\":11357,\"journal\":{\"name\":\"Drug Delivery and Translational Research\",\"volume\":\" \",\"pages\":\"1393-1410\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Delivery and Translational Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13346-024-01685-9\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery and Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13346-024-01685-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Quality by design driven development of lipid nanoparticles for cutaneous targeting: a preliminary approach.
Fungal infections are the fourth common cause of infection affecting around 50 million populations across the globe. Dermatophytes contribute to the majority of superficial fungal infections. Clotrimazole (CTZ), an imidazole derivative is widely preferred for the treatment of topical fungal infections. Conventional topical formulations enable effective penetration of CTZ into the stratum corneum, however, its low solubility results in poor dermal bioavailability, and variable drug levels limit the efficacy. The aim was to increase dermal bioavailability and sustain drug release, thereby potentially enhancing drug retention and reducing its side effects. This work evaluated the CTZ loaded solid lipid nanoparticles (SLN) consisting of precirol and polysorbate-80 developed using high pressure homogenization and optimized with QbD approach. Prior to release studies, CTZ-SLNs were characterized by different analytical techniques. The laser diffractometry and field emission scanning electron microscopy indicated that SLNs were spherical in shape with mean diameter of 450 ± 3.45 nm. DSC and XRD results revealed that the drug remained molecularly dispersed in the lipid matrix. The CTZ-SLNs showed no physicochemical instability during 6 months of storage at different temperatures. Further, the Carbopol with its pseudoplastic behavior showed a crucial role in forming homogenous and stable network for imbibing the CTZ-SLN dispersion for effective retention in skin. As examined, in-vitro drug release was sustained up to 24 h while ex-vivo skin retention and drug permeation studies showed the highest accumulation and lowest permeation with nanogel in comparison to pure drug and Candid® cream. Further, the in-vivo antifungal efficacy of nanogel suggested once-a-day application for 10 days, supported by histopathological analysis for complete eradication infection. In summary, the findings suggest, that nanogel-loaded with CTZ-SLNs has great potential for the management of fungal infections caused by Candida albicans.
期刊介绍:
The journal provides a unique forum for scientific publication of high-quality research that is exclusively focused on translational aspects of drug delivery. Rationally developed, effective delivery systems can potentially affect clinical outcome in different disease conditions.
Research focused on the following areas of translational drug delivery research will be considered for publication in the journal.
Designing and developing novel drug delivery systems, with a focus on their application to disease conditions;
Preclinical and clinical data related to drug delivery systems;
Drug distribution, pharmacokinetics, clearance, with drug delivery systems as compared to traditional dosing to demonstrate beneficial outcomes
Short-term and long-term biocompatibility of drug delivery systems, host response;
Biomaterials with growth factors for stem-cell differentiation in regenerative medicine and tissue engineering;
Image-guided drug therapy,
Nanomedicine;
Devices for drug delivery and drug/device combination products.
In addition to original full-length papers, communications, and reviews, the journal includes editorials, reports of future meetings, research highlights, and announcements pertaining to the activities of the Controlled Release Society.