{"title":"一种新的四维混沌系统,在耗散和保守之间具有丰富的过渡特性。","authors":"Xu Sun, Xiangxin Leng, Bowen Tian, Baoxiang Du","doi":"10.1063/5.0205144","DOIUrl":null,"url":null,"abstract":"<p><p>The general form of the Hamiltonian function serves as the foundation for the creation of a new four-dimensional chaotic system in this study. We discover that the external excitation parameter d, the internal parameter a, and all initial values have a transforming influence on the system property. Additionally, the corresponding fractional-order chaotic system in accordance with the constructed four-dimensional chaotic system is proposed. It is found that as the order q rises, the system transforms gradually from a dissipative system to a conservative system. Multiple coexisting attraction flows based on the Hamiltonian energy magnitude are present in this dual-property chaotic system. The complexity analysis shows that the system has a high level of complexity. NIST test indicates that the chaotic sequences produced by this dual-property chaotic system exhibit good pseudo-randomness. Finally, a Digital Signal Processing-based hardware platform confirms the physical realizability of the system.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new four-dimensional chaotic system with rich transitional characteristics between dissipative and conservative.\",\"authors\":\"Xu Sun, Xiangxin Leng, Bowen Tian, Baoxiang Du\",\"doi\":\"10.1063/5.0205144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The general form of the Hamiltonian function serves as the foundation for the creation of a new four-dimensional chaotic system in this study. We discover that the external excitation parameter d, the internal parameter a, and all initial values have a transforming influence on the system property. Additionally, the corresponding fractional-order chaotic system in accordance with the constructed four-dimensional chaotic system is proposed. It is found that as the order q rises, the system transforms gradually from a dissipative system to a conservative system. Multiple coexisting attraction flows based on the Hamiltonian energy magnitude are present in this dual-property chaotic system. The complexity analysis shows that the system has a high level of complexity. NIST test indicates that the chaotic sequences produced by this dual-property chaotic system exhibit good pseudo-randomness. Finally, a Digital Signal Processing-based hardware platform confirms the physical realizability of the system.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0205144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0205144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
本研究以哈密顿函数的一般形式为基础,创建了一个新的四维混沌系统。我们发现外部激励参数 d、内部参数 a 以及所有初始值都会对系统性质产生转化影响。此外,还根据所构建的四维混沌系统提出了相应的分数阶混沌系统。研究发现,随着阶数 q 的增加,系统逐渐从耗散系统转变为保守系统。该双属性混沌系统中存在基于哈密顿能量大小的多种共存吸引流。复杂性分析表明,该系统具有很高的复杂性。NIST 测试表明,该双属性混沌系统产生的混沌序列具有良好的伪随机性。最后,基于数字信号处理的硬件平台证实了该系统的物理可实现性。
A new four-dimensional chaotic system with rich transitional characteristics between dissipative and conservative.
The general form of the Hamiltonian function serves as the foundation for the creation of a new four-dimensional chaotic system in this study. We discover that the external excitation parameter d, the internal parameter a, and all initial values have a transforming influence on the system property. Additionally, the corresponding fractional-order chaotic system in accordance with the constructed four-dimensional chaotic system is proposed. It is found that as the order q rises, the system transforms gradually from a dissipative system to a conservative system. Multiple coexisting attraction flows based on the Hamiltonian energy magnitude are present in this dual-property chaotic system. The complexity analysis shows that the system has a high level of complexity. NIST test indicates that the chaotic sequences produced by this dual-property chaotic system exhibit good pseudo-randomness. Finally, a Digital Signal Processing-based hardware platform confirms the physical realizability of the system.