{"title":"卤代烃脱卤酶(LinB)综述:β-六氯环己烷(HCH)降解酶。","authors":"Helianthous Verma, Jasvinder Kaur, Vasundhara Thakur, Gauri Garg Dhingra, Rup Lal","doi":"10.1007/s00203-024-04105-1","DOIUrl":null,"url":null,"abstract":"<div><p>Haloalkane dehalogenase, LinB, is a member of the α/β hydrolase family of enzymes. It has a wide range of halogenated substrates, but, has been mostly studied in context of degradation of hexachlorocyclohexane (HCH) isomers, especially β-HCH (5–12% of total HCH isomers), which is the most recalcitrant and persistent among all the HCH isomers. LinB was identified to directly act on β-HCH in a one or two step transformation which decreases its toxicity manifold. Thereafter, many studies focused on LinB including its structure determination using X-ray crystallographic studies, structure comparison with other haloalkane dehalogenases, substrate specificity and kinetic studies, protein engineering and site-directed mutagenesis studies in search of better catalytic activity of the enzyme. LinB was mainly identified and characterized in bacteria belonging to sphingomonads. Detailed sequence comparison of LinB from different sphingomonads further revealed the residues critical for its activity and ability to catalyze either one or two step transformation of β-HCH. Association of LinB with IS<i>6100</i> elements is also being discussed in detail in sphingomonads. In this review, we summarized vigorous efforts done by different research groups on LinB for developing better bioremediation strategies against HCH contamination. Also, kinetic studies, protein engineering and site directed mutagenesis studies discussed here forms the basis of further exploration of LinB’s role as an efficient enzyme in bioremediation projects.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive review on Haloalkane dehalogenase (LinB): a β-hexachlorocyclohexane (HCH) degrading enzyme\",\"authors\":\"Helianthous Verma, Jasvinder Kaur, Vasundhara Thakur, Gauri Garg Dhingra, Rup Lal\",\"doi\":\"10.1007/s00203-024-04105-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Haloalkane dehalogenase, LinB, is a member of the α/β hydrolase family of enzymes. It has a wide range of halogenated substrates, but, has been mostly studied in context of degradation of hexachlorocyclohexane (HCH) isomers, especially β-HCH (5–12% of total HCH isomers), which is the most recalcitrant and persistent among all the HCH isomers. LinB was identified to directly act on β-HCH in a one or two step transformation which decreases its toxicity manifold. Thereafter, many studies focused on LinB including its structure determination using X-ray crystallographic studies, structure comparison with other haloalkane dehalogenases, substrate specificity and kinetic studies, protein engineering and site-directed mutagenesis studies in search of better catalytic activity of the enzyme. LinB was mainly identified and characterized in bacteria belonging to sphingomonads. Detailed sequence comparison of LinB from different sphingomonads further revealed the residues critical for its activity and ability to catalyze either one or two step transformation of β-HCH. Association of LinB with IS<i>6100</i> elements is also being discussed in detail in sphingomonads. In this review, we summarized vigorous efforts done by different research groups on LinB for developing better bioremediation strategies against HCH contamination. Also, kinetic studies, protein engineering and site directed mutagenesis studies discussed here forms the basis of further exploration of LinB’s role as an efficient enzyme in bioremediation projects.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00203-024-04105-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s00203-024-04105-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Comprehensive review on Haloalkane dehalogenase (LinB): a β-hexachlorocyclohexane (HCH) degrading enzyme
Haloalkane dehalogenase, LinB, is a member of the α/β hydrolase family of enzymes. It has a wide range of halogenated substrates, but, has been mostly studied in context of degradation of hexachlorocyclohexane (HCH) isomers, especially β-HCH (5–12% of total HCH isomers), which is the most recalcitrant and persistent among all the HCH isomers. LinB was identified to directly act on β-HCH in a one or two step transformation which decreases its toxicity manifold. Thereafter, many studies focused on LinB including its structure determination using X-ray crystallographic studies, structure comparison with other haloalkane dehalogenases, substrate specificity and kinetic studies, protein engineering and site-directed mutagenesis studies in search of better catalytic activity of the enzyme. LinB was mainly identified and characterized in bacteria belonging to sphingomonads. Detailed sequence comparison of LinB from different sphingomonads further revealed the residues critical for its activity and ability to catalyze either one or two step transformation of β-HCH. Association of LinB with IS6100 elements is also being discussed in detail in sphingomonads. In this review, we summarized vigorous efforts done by different research groups on LinB for developing better bioremediation strategies against HCH contamination. Also, kinetic studies, protein engineering and site directed mutagenesis studies discussed here forms the basis of further exploration of LinB’s role as an efficient enzyme in bioremediation projects.