多反应液晶胶原蛋白引导贻贝基质形成

IF 5.4 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biomacromolecules Pub Date : 2024-09-09 Epub Date: 2024-08-15 DOI:10.1021/acs.biomac.4c00709
Max Renner-Rao, Tobias Priemel, Jack Anderson, Franziska Jehle, Matthew J Harrington
{"title":"多反应液晶胶原蛋白引导贻贝基质形成","authors":"Max Renner-Rao, Tobias Priemel, Jack Anderson, Franziska Jehle, Matthew J Harrington","doi":"10.1021/acs.biomac.4c00709","DOIUrl":null,"url":null,"abstract":"<p><p>Marine mussels fabricate tough collagenous fibers known as byssal threads to anchor themselves. Threads are produced individually in minutes via secretion of liquid crystalline (LC) collagenous precursors (preCols); yet the physical and chemical parameters influencing thread formation remain unclear. Here, we characterized the structural anisotropy of native and artificially induced threads using quantitative polarized light microscopy and transmission electron microscopy to elucidate spontaneous vs regulated aspects of thread assembly, discovering that preCol LC phases form aligned domains of several hundred microns, but not the cm-level alignment of native threads. We then explored the hypothesized roles of mechanical shear, pH, and metal ions on thread formation through <i>in vitro</i> assembly studies employing a microfluidic flow focusing device using purified preCol secretory vesicles. Our results provide clear evidence for the role of all three parameters in modulating the structure and properties of the final product with relevance for fabrication of collagenous scaffolds for tissue engineering applications.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":"6038-6049"},"PeriodicalIF":5.4000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiresponsive Liquid Crystal Collagen Guides Mussel Byssus Formation.\",\"authors\":\"Max Renner-Rao, Tobias Priemel, Jack Anderson, Franziska Jehle, Matthew J Harrington\",\"doi\":\"10.1021/acs.biomac.4c00709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Marine mussels fabricate tough collagenous fibers known as byssal threads to anchor themselves. Threads are produced individually in minutes via secretion of liquid crystalline (LC) collagenous precursors (preCols); yet the physical and chemical parameters influencing thread formation remain unclear. Here, we characterized the structural anisotropy of native and artificially induced threads using quantitative polarized light microscopy and transmission electron microscopy to elucidate spontaneous vs regulated aspects of thread assembly, discovering that preCol LC phases form aligned domains of several hundred microns, but not the cm-level alignment of native threads. We then explored the hypothesized roles of mechanical shear, pH, and metal ions on thread formation through <i>in vitro</i> assembly studies employing a microfluidic flow focusing device using purified preCol secretory vesicles. Our results provide clear evidence for the role of all three parameters in modulating the structure and properties of the final product with relevance for fabrication of collagenous scaffolds for tissue engineering applications.</p>\",\"PeriodicalId\":30,\"journal\":{\"name\":\"Biomacromolecules\",\"volume\":\" \",\"pages\":\"6038-6049\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomacromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.biomac.4c00709\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c00709","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

海洋贻贝会制造坚韧的胶原纤维,即贻贝螺纹来固定自己。通过分泌液晶(LC)胶原蛋白前体(preCols),螺纹可在数分钟内单独生成;但影响螺纹形成的物理和化学参数仍不清楚。在这里,我们使用定量偏光显微镜和透射电子显微镜鉴定了原生和人工诱导螺纹的结构各向异性,以阐明螺纹组装的自发和受调控方面,发现液晶胶原前体相形成了数百微米的排列域,而原生螺纹的排列则没有达到厘米级。然后,我们利用纯化的preCol分泌囊泡,通过微流体流动聚焦装置进行体外组装研究,探索了机械剪切力、pH值和金属离子对螺纹形成的假设作用。我们的研究结果清楚地证明了这三个参数在调节最终产品的结构和特性方面所起的作用,对组织工程应用中胶原支架的制造具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multiresponsive Liquid Crystal Collagen Guides Mussel Byssus Formation.

Multiresponsive Liquid Crystal Collagen Guides Mussel Byssus Formation.

Marine mussels fabricate tough collagenous fibers known as byssal threads to anchor themselves. Threads are produced individually in minutes via secretion of liquid crystalline (LC) collagenous precursors (preCols); yet the physical and chemical parameters influencing thread formation remain unclear. Here, we characterized the structural anisotropy of native and artificially induced threads using quantitative polarized light microscopy and transmission electron microscopy to elucidate spontaneous vs regulated aspects of thread assembly, discovering that preCol LC phases form aligned domains of several hundred microns, but not the cm-level alignment of native threads. We then explored the hypothesized roles of mechanical shear, pH, and metal ions on thread formation through in vitro assembly studies employing a microfluidic flow focusing device using purified preCol secretory vesicles. Our results provide clear evidence for the role of all three parameters in modulating the structure and properties of the final product with relevance for fabrication of collagenous scaffolds for tissue engineering applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomacromolecules
Biomacromolecules 化学-高分子科学
CiteScore
10.60
自引率
4.80%
发文量
417
审稿时长
1.6 months
期刊介绍: Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine. Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信