Max Renner-Rao, Tobias Priemel, Jack Anderson, Franziska Jehle, Matthew J Harrington
{"title":"多反应液晶胶原蛋白引导贻贝基质形成","authors":"Max Renner-Rao, Tobias Priemel, Jack Anderson, Franziska Jehle, Matthew J Harrington","doi":"10.1021/acs.biomac.4c00709","DOIUrl":null,"url":null,"abstract":"<p><p>Marine mussels fabricate tough collagenous fibers known as byssal threads to anchor themselves. Threads are produced individually in minutes via secretion of liquid crystalline (LC) collagenous precursors (preCols); yet the physical and chemical parameters influencing thread formation remain unclear. Here, we characterized the structural anisotropy of native and artificially induced threads using quantitative polarized light microscopy and transmission electron microscopy to elucidate spontaneous vs regulated aspects of thread assembly, discovering that preCol LC phases form aligned domains of several hundred microns, but not the cm-level alignment of native threads. We then explored the hypothesized roles of mechanical shear, pH, and metal ions on thread formation through <i>in vitro</i> assembly studies employing a microfluidic flow focusing device using purified preCol secretory vesicles. Our results provide clear evidence for the role of all three parameters in modulating the structure and properties of the final product with relevance for fabrication of collagenous scaffolds for tissue engineering applications.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":"6038-6049"},"PeriodicalIF":5.4000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiresponsive Liquid Crystal Collagen Guides Mussel Byssus Formation.\",\"authors\":\"Max Renner-Rao, Tobias Priemel, Jack Anderson, Franziska Jehle, Matthew J Harrington\",\"doi\":\"10.1021/acs.biomac.4c00709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Marine mussels fabricate tough collagenous fibers known as byssal threads to anchor themselves. Threads are produced individually in minutes via secretion of liquid crystalline (LC) collagenous precursors (preCols); yet the physical and chemical parameters influencing thread formation remain unclear. Here, we characterized the structural anisotropy of native and artificially induced threads using quantitative polarized light microscopy and transmission electron microscopy to elucidate spontaneous vs regulated aspects of thread assembly, discovering that preCol LC phases form aligned domains of several hundred microns, but not the cm-level alignment of native threads. We then explored the hypothesized roles of mechanical shear, pH, and metal ions on thread formation through <i>in vitro</i> assembly studies employing a microfluidic flow focusing device using purified preCol secretory vesicles. Our results provide clear evidence for the role of all three parameters in modulating the structure and properties of the final product with relevance for fabrication of collagenous scaffolds for tissue engineering applications.</p>\",\"PeriodicalId\":30,\"journal\":{\"name\":\"Biomacromolecules\",\"volume\":\" \",\"pages\":\"6038-6049\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomacromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.biomac.4c00709\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c00709","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Marine mussels fabricate tough collagenous fibers known as byssal threads to anchor themselves. Threads are produced individually in minutes via secretion of liquid crystalline (LC) collagenous precursors (preCols); yet the physical and chemical parameters influencing thread formation remain unclear. Here, we characterized the structural anisotropy of native and artificially induced threads using quantitative polarized light microscopy and transmission electron microscopy to elucidate spontaneous vs regulated aspects of thread assembly, discovering that preCol LC phases form aligned domains of several hundred microns, but not the cm-level alignment of native threads. We then explored the hypothesized roles of mechanical shear, pH, and metal ions on thread formation through in vitro assembly studies employing a microfluidic flow focusing device using purified preCol secretory vesicles. Our results provide clear evidence for the role of all three parameters in modulating the structure and properties of the final product with relevance for fabrication of collagenous scaffolds for tissue engineering applications.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.