{"title":"高固含量无定形聚(amic acid)分子内环化诱导自组装产生的结晶纳米花。","authors":"Jiamei Liu, Tao Wang, Hui Sun","doi":"10.1021/acsmacrolett.4c00472","DOIUrl":null,"url":null,"abstract":"<p><p>The investigation of the amorphous to crystalline transformation and the corresponding influence on the self-assembly behavior of amphiphilic polymers are of significant interest in this field. Herein, we propose the concept of intramolecular cyclization-induced self-assembly (ICISA) to prepare crystalline nanoflowers at a high solid content of 15% on the basis of the amorphous to crystalline transformation of poly(amic acid) (PAA). Taking advantage of the reactive property of the PAA, rigid and crystalline polyimide (PI) segments are introduced to the backbone of the PAA to give P(AA-<i>stat</i>-I) induced by the intramolecular cyclization reaction upon thermal treatment, leading to the in situ formation of crystalline nanoflowers. Revealing the formation mechanism of the nanoflowers, we found that the nanosheets are formed at the early stage and then stacked to form the nanoflowers at high concentrations. The relationship between the degree of imidization and incubation temperature is quantitatively analyzed, and the effects of temperature on the morphology, degree of imidization, and crystallinity of the assemblies are also investigated. Furthermore, computer simulations demonstrate the optimized temperature of ICISA of 160 °C, which ensures the match between the intramolecular cyclization reaction rate, the self-assembly process, and the lowest energy state of the self-assembly system, resulting in the formation of nanoflowers with high crystallinity. Overall, a facile one-step strategy is proposed to prepare crystalline nanoflowers based on the in situ thermally triggered intramolecular cyclization reaction of a PAA, which may bring fresh insights into the dynamic amorphous to the crystalline transformation of polymers.</p>","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":" ","pages":"1139-1146"},"PeriodicalIF":5.2000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crystalline Nanoflowers Derived from the Intramolecular Cyclization-Induced Self-Assembly of an Amorphous Poly(amic acid) at High Solid Content.\",\"authors\":\"Jiamei Liu, Tao Wang, Hui Sun\",\"doi\":\"10.1021/acsmacrolett.4c00472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The investigation of the amorphous to crystalline transformation and the corresponding influence on the self-assembly behavior of amphiphilic polymers are of significant interest in this field. Herein, we propose the concept of intramolecular cyclization-induced self-assembly (ICISA) to prepare crystalline nanoflowers at a high solid content of 15% on the basis of the amorphous to crystalline transformation of poly(amic acid) (PAA). Taking advantage of the reactive property of the PAA, rigid and crystalline polyimide (PI) segments are introduced to the backbone of the PAA to give P(AA-<i>stat</i>-I) induced by the intramolecular cyclization reaction upon thermal treatment, leading to the in situ formation of crystalline nanoflowers. Revealing the formation mechanism of the nanoflowers, we found that the nanosheets are formed at the early stage and then stacked to form the nanoflowers at high concentrations. The relationship between the degree of imidization and incubation temperature is quantitatively analyzed, and the effects of temperature on the morphology, degree of imidization, and crystallinity of the assemblies are also investigated. Furthermore, computer simulations demonstrate the optimized temperature of ICISA of 160 °C, which ensures the match between the intramolecular cyclization reaction rate, the self-assembly process, and the lowest energy state of the self-assembly system, resulting in the formation of nanoflowers with high crystallinity. Overall, a facile one-step strategy is proposed to prepare crystalline nanoflowers based on the in situ thermally triggered intramolecular cyclization reaction of a PAA, which may bring fresh insights into the dynamic amorphous to the crystalline transformation of polymers.</p>\",\"PeriodicalId\":18,\"journal\":{\"name\":\"ACS Macro Letters\",\"volume\":\" \",\"pages\":\"1139-1146\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Macro Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acsmacrolett.4c00472\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Macro Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsmacrolett.4c00472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Crystalline Nanoflowers Derived from the Intramolecular Cyclization-Induced Self-Assembly of an Amorphous Poly(amic acid) at High Solid Content.
The investigation of the amorphous to crystalline transformation and the corresponding influence on the self-assembly behavior of amphiphilic polymers are of significant interest in this field. Herein, we propose the concept of intramolecular cyclization-induced self-assembly (ICISA) to prepare crystalline nanoflowers at a high solid content of 15% on the basis of the amorphous to crystalline transformation of poly(amic acid) (PAA). Taking advantage of the reactive property of the PAA, rigid and crystalline polyimide (PI) segments are introduced to the backbone of the PAA to give P(AA-stat-I) induced by the intramolecular cyclization reaction upon thermal treatment, leading to the in situ formation of crystalline nanoflowers. Revealing the formation mechanism of the nanoflowers, we found that the nanosheets are formed at the early stage and then stacked to form the nanoflowers at high concentrations. The relationship between the degree of imidization and incubation temperature is quantitatively analyzed, and the effects of temperature on the morphology, degree of imidization, and crystallinity of the assemblies are also investigated. Furthermore, computer simulations demonstrate the optimized temperature of ICISA of 160 °C, which ensures the match between the intramolecular cyclization reaction rate, the self-assembly process, and the lowest energy state of the self-assembly system, resulting in the formation of nanoflowers with high crystallinity. Overall, a facile one-step strategy is proposed to prepare crystalline nanoflowers based on the in situ thermally triggered intramolecular cyclization reaction of a PAA, which may bring fresh insights into the dynamic amorphous to the crystalline transformation of polymers.
期刊介绍:
ACS Macro Letters publishes research in all areas of contemporary soft matter science in which macromolecules play a key role, including nanotechnology, self-assembly, supramolecular chemistry, biomaterials, energy generation and storage, and renewable/sustainable materials. Submissions to ACS Macro Letters should justify clearly the rapid disclosure of the key elements of the study. The scope of the journal includes high-impact research of broad interest in all areas of polymer science and engineering, including cross-disciplinary research that interfaces with polymer science.
With the launch of ACS Macro Letters, all Communications that were formerly published in Macromolecules and Biomacromolecules will be published as Letters in ACS Macro Letters.