减轻铝硅超导量子比特的界面介电损耗

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Janka Biznárová, Amr Osman, Emil Rehnman, Lert Chayanun, Christian Križan, Per Malmberg, Marcus Rommel, Christopher Warren, Per Delsing, August Yurgens, Jonas Bylander, Anita Fadavi Roudsari
{"title":"减轻铝硅超导量子比特的界面介电损耗","authors":"Janka Biznárová, Amr Osman, Emil Rehnman, Lert Chayanun, Christian Križan, Per Malmberg, Marcus Rommel, Christopher Warren, Per Delsing, August Yurgens, Jonas Bylander, Anita Fadavi Roudsari","doi":"10.1038/s41534-024-00868-z","DOIUrl":null,"url":null,"abstract":"<p>We demonstrate aluminum-on-silicon planar transmon qubits with time-averaged <i>T</i><sub>1</sub> energy relaxation times of up to 270 μs, corresponding to <i>Q</i> = 5 million, and a highest observed value of 501 μs. Through materials analysis techniques and numerical simulations we investigate the dominant source of energy loss, and devise and demonstrate a strategy toward its mitigation. Growing aluminum films thicker than 300 nm reduces the presence of oxide, a known host of defects, near the substrate-metal interface, as confirmed by time-of-flight secondary ion mass spectrometry. A loss analysis of coplanar waveguide resonators shows that this results in a reduction of dielectric loss due to two-level system defects. The correlation between the enhanced performance of our devices and the film thickness is due to the aluminum growth in columnar structures of parallel grain boundaries: transmission electron microscopy shows larger grains in the thicker film, and consequently fewer grain boundaries containing oxide near the substrate-metal interface.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"18 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitigation of interfacial dielectric loss in aluminum-on-silicon superconducting qubits\",\"authors\":\"Janka Biznárová, Amr Osman, Emil Rehnman, Lert Chayanun, Christian Križan, Per Malmberg, Marcus Rommel, Christopher Warren, Per Delsing, August Yurgens, Jonas Bylander, Anita Fadavi Roudsari\",\"doi\":\"10.1038/s41534-024-00868-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We demonstrate aluminum-on-silicon planar transmon qubits with time-averaged <i>T</i><sub>1</sub> energy relaxation times of up to 270 μs, corresponding to <i>Q</i> = 5 million, and a highest observed value of 501 μs. Through materials analysis techniques and numerical simulations we investigate the dominant source of energy loss, and devise and demonstrate a strategy toward its mitigation. Growing aluminum films thicker than 300 nm reduces the presence of oxide, a known host of defects, near the substrate-metal interface, as confirmed by time-of-flight secondary ion mass spectrometry. A loss analysis of coplanar waveguide resonators shows that this results in a reduction of dielectric loss due to two-level system defects. The correlation between the enhanced performance of our devices and the film thickness is due to the aluminum growth in columnar structures of parallel grain boundaries: transmission electron microscopy shows larger grains in the thicker film, and consequently fewer grain boundaries containing oxide near the substrate-metal interface.</p>\",\"PeriodicalId\":19212,\"journal\":{\"name\":\"npj Quantum Information\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Information\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41534-024-00868-z\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00868-z","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们展示了铝硅平面跨文量子比特,其时间平均 T1 能量弛豫时间高达 270 μs,相当于 Q = 500 万,观测到的最高值为 501 μs。通过材料分析技术和数值模拟,我们研究了能量损耗的主要来源,并设计和展示了一种减少能量损耗的策略。通过飞行时间二次离子质谱法证实,生长厚度超过 300 nm 的铝膜可减少基底-金属界面附近氧化物的存在,而氧化物是已知的缺陷宿主。共面波导谐振器的损耗分析表明,这减少了两级系统缺陷造成的介质损耗。我们器件性能的提高与薄膜厚度之间的相关性是由于铝在平行晶界的柱状结构中生长:透射电子显微镜显示较厚薄膜中的晶粒较大,因此基底-金属界面附近含有氧化物的晶界较少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mitigation of interfacial dielectric loss in aluminum-on-silicon superconducting qubits

Mitigation of interfacial dielectric loss in aluminum-on-silicon superconducting qubits

We demonstrate aluminum-on-silicon planar transmon qubits with time-averaged T1 energy relaxation times of up to 270 μs, corresponding to Q = 5 million, and a highest observed value of 501 μs. Through materials analysis techniques and numerical simulations we investigate the dominant source of energy loss, and devise and demonstrate a strategy toward its mitigation. Growing aluminum films thicker than 300 nm reduces the presence of oxide, a known host of defects, near the substrate-metal interface, as confirmed by time-of-flight secondary ion mass spectrometry. A loss analysis of coplanar waveguide resonators shows that this results in a reduction of dielectric loss due to two-level system defects. The correlation between the enhanced performance of our devices and the film thickness is due to the aluminum growth in columnar structures of parallel grain boundaries: transmission electron microscopy shows larger grains in the thicker film, and consequently fewer grain boundaries containing oxide near the substrate-metal interface.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信