下载PDF
{"title":"子空间包含图的拉普拉奇特征值的渐近行为","authors":"Alan Lew","doi":"10.1112/jlms.12972","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <msub>\n <mtext>Fl</mtext>\n <mrow>\n <mi>n</mi>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n </msub>\n <annotation>$\\text{Fl}_{n,q}$</annotation>\n </semantics></math> be the simplicial complex whose vertices are the nontrivial subspaces of <span></span><math>\n <semantics>\n <msubsup>\n <mi>F</mi>\n <mi>q</mi>\n <mi>n</mi>\n </msubsup>\n <annotation>$\\mathbb {F}_q^n$</annotation>\n </semantics></math> and whose simplices correspond to families of subspaces forming a flag. Let <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>Δ</mi>\n <mi>k</mi>\n <mo>+</mo>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <msub>\n <mtext>Fl</mtext>\n <mrow>\n <mi>n</mi>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\Delta ^{+}_k(\\text{Fl}_{n,q})$</annotation>\n </semantics></math> be the <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-dimensional weighted upper Laplacian on <span></span><math>\n <semantics>\n <msub>\n <mtext>Fl</mtext>\n <mrow>\n <mi>n</mi>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n </msub>\n <annotation>$ \\text{Fl}_{n,q}$</annotation>\n </semantics></math>. The spectrum of <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>Δ</mi>\n <mi>k</mi>\n <mo>+</mo>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <msub>\n <mtext>Fl</mtext>\n <mrow>\n <mi>n</mi>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\Delta ^{+}_k(\\text{Fl}_{n,q})$</annotation>\n </semantics></math> was first studied by Garland, who obtained a lower bound on its nonzero eigenvalues. Here, we focus on the <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$k=0$</annotation>\n </semantics></math> case. We determine the asymptotic behavior of the eigenvalues of <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>Δ</mi>\n <mn>0</mn>\n <mo>+</mo>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <msub>\n <mtext>Fl</mtext>\n <mrow>\n <mi>n</mi>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\Delta _{0}^{+}(\\text{Fl}_{n,q})$</annotation>\n </semantics></math> as <span></span><math>\n <semantics>\n <mi>q</mi>\n <annotation>$q$</annotation>\n </semantics></math> tends to infinity. In particular, we show that for large enough <span></span><math>\n <semantics>\n <mi>q</mi>\n <annotation>$q$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>Δ</mi>\n <mn>0</mn>\n <mo>+</mo>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <msub>\n <mtext>Fl</mtext>\n <mrow>\n <mi>n</mi>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\Delta _{0}^{+}(\\text{Fl}_{n,q})$</annotation>\n </semantics></math> has exactly <span></span><math>\n <semantics>\n <mrow>\n <mfenced>\n <msup>\n <mi>n</mi>\n <mn>2</mn>\n </msup>\n <mo>/</mo>\n <mn>4</mn>\n </mfenced>\n <mo>+</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$\\left\\lfloor n^2/4\\right\\rfloor +2$</annotation>\n </semantics></math> distinct eigenvalues, and that every eigenvalue <span></span><math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n <mo>≠</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mi>n</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$\\lambda \\ne 0,n-1$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>Δ</mi>\n <mn>0</mn>\n <mo>+</mo>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <msub>\n <mtext>Fl</mtext>\n <mrow>\n <mi>n</mi>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\Delta _{0}^{+}(\\text{Fl}_{n,q})$</annotation>\n </semantics></math> tends to <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$n-2$</annotation>\n </semantics></math> as <span></span><math>\n <semantics>\n <mi>q</mi>\n <annotation>$q$</annotation>\n </semantics></math> goes to infinity. This solves the zero-dimensional case of a conjecture of Papikian.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12972","citationCount":"0","resultStr":"{\"title\":\"Asymptotic behavior of Laplacian eigenvalues of subspace inclusion graphs\",\"authors\":\"Alan Lew\",\"doi\":\"10.1112/jlms.12972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <msub>\\n <mtext>Fl</mtext>\\n <mrow>\\n <mi>n</mi>\\n <mo>,</mo>\\n <mi>q</mi>\\n </mrow>\\n </msub>\\n <annotation>$\\\\text{Fl}_{n,q}$</annotation>\\n </semantics></math> be the simplicial complex whose vertices are the nontrivial subspaces of <span></span><math>\\n <semantics>\\n <msubsup>\\n <mi>F</mi>\\n <mi>q</mi>\\n <mi>n</mi>\\n </msubsup>\\n <annotation>$\\\\mathbb {F}_q^n$</annotation>\\n </semantics></math> and whose simplices correspond to families of subspaces forming a flag. Let <span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>Δ</mi>\\n <mi>k</mi>\\n <mo>+</mo>\\n </msubsup>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mtext>Fl</mtext>\\n <mrow>\\n <mi>n</mi>\\n <mo>,</mo>\\n <mi>q</mi>\\n </mrow>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\Delta ^{+}_k(\\\\text{Fl}_{n,q})$</annotation>\\n </semantics></math> be the <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math>-dimensional weighted upper Laplacian on <span></span><math>\\n <semantics>\\n <msub>\\n <mtext>Fl</mtext>\\n <mrow>\\n <mi>n</mi>\\n <mo>,</mo>\\n <mi>q</mi>\\n </mrow>\\n </msub>\\n <annotation>$ \\\\text{Fl}_{n,q}$</annotation>\\n </semantics></math>. The spectrum of <span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>Δ</mi>\\n <mi>k</mi>\\n <mo>+</mo>\\n </msubsup>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mtext>Fl</mtext>\\n <mrow>\\n <mi>n</mi>\\n <mo>,</mo>\\n <mi>q</mi>\\n </mrow>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\Delta ^{+}_k(\\\\text{Fl}_{n,q})$</annotation>\\n </semantics></math> was first studied by Garland, who obtained a lower bound on its nonzero eigenvalues. Here, we focus on the <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>=</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$k=0$</annotation>\\n </semantics></math> case. We determine the asymptotic behavior of the eigenvalues of <span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>Δ</mi>\\n <mn>0</mn>\\n <mo>+</mo>\\n </msubsup>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mtext>Fl</mtext>\\n <mrow>\\n <mi>n</mi>\\n <mo>,</mo>\\n <mi>q</mi>\\n </mrow>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\Delta _{0}^{+}(\\\\text{Fl}_{n,q})$</annotation>\\n </semantics></math> as <span></span><math>\\n <semantics>\\n <mi>q</mi>\\n <annotation>$q$</annotation>\\n </semantics></math> tends to infinity. In particular, we show that for large enough <span></span><math>\\n <semantics>\\n <mi>q</mi>\\n <annotation>$q$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>Δ</mi>\\n <mn>0</mn>\\n <mo>+</mo>\\n </msubsup>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mtext>Fl</mtext>\\n <mrow>\\n <mi>n</mi>\\n <mo>,</mo>\\n <mi>q</mi>\\n </mrow>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\Delta _{0}^{+}(\\\\text{Fl}_{n,q})$</annotation>\\n </semantics></math> has exactly <span></span><math>\\n <semantics>\\n <mrow>\\n <mfenced>\\n <msup>\\n <mi>n</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>/</mo>\\n <mn>4</mn>\\n </mfenced>\\n <mo>+</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$\\\\left\\\\lfloor n^2/4\\\\right\\\\rfloor +2$</annotation>\\n </semantics></math> distinct eigenvalues, and that every eigenvalue <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>λ</mi>\\n <mo>≠</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$\\\\lambda \\\\ne 0,n-1$</annotation>\\n </semantics></math> of <span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>Δ</mi>\\n <mn>0</mn>\\n <mo>+</mo>\\n </msubsup>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mtext>Fl</mtext>\\n <mrow>\\n <mi>n</mi>\\n <mo>,</mo>\\n <mi>q</mi>\\n </mrow>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\Delta _{0}^{+}(\\\\text{Fl}_{n,q})$</annotation>\\n </semantics></math> tends to <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$n-2$</annotation>\\n </semantics></math> as <span></span><math>\\n <semantics>\\n <mi>q</mi>\\n <annotation>$q$</annotation>\\n </semantics></math> goes to infinity. This solves the zero-dimensional case of a conjecture of Papikian.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12972\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12972\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12972","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
引用
批量引用