{"title":"在有机金属卤化物过氧化物太阳能电池的环境空气工艺中使用铵添加剂减少重组","authors":"Kyungmin Lee, Seungyeon Hong, Hyo Jung Kim","doi":"10.1016/j.orgel.2024.107105","DOIUrl":null,"url":null,"abstract":"<div><p>Organometal halide perovskite solar cells (PSCs) have achieved power conversion efficiencies (PCE) greater than 26 %, making them attractive photovoltaic devices. However, achieving high-performance PSCs typically requires inert gas conditions and antisolvent processes, which are hurdles to the commercialization of PSCs. To overcome these problems, we adopted a vacuum flash-assisted process (VASP) under ambient air conditions. In addition, to minimize the effect of moisture and enhance crystal growth, we adopted an additive engineering strategy using ammonium salts (NH<sub>4</sub>X, X = I, Cl, and SCN). Among the various ammonium salts, ammonium iodide (NH<sub>4</sub>I) exhibited the best device performance, with a PCE of 19.8 %. The role of the ammonium salts was studied using photoluminescence (PL), scanning electron microscopy (SEM), grazing incidence wide-angle X-ray scattering (GIWAXS), and the device characteristics of the devices. In addition, we measured the wet film state using X-rays to study the effects of ammonium salts on the crystallization process. From these measurements and analyses, we found that the ammonium additives induced rapid crystallization of the perovskite layer, and NH<sub>4</sub>I induced a uniform crystalline state of the film in the vertical direction. The uniformity of the crystalline state was related to the reduction in charge recombination and the enhancement of the PCE in the NH<sub>4</sub>I added devices.</p></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"133 ","pages":"Article 107105"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recombination reduction by ammonium additives in ambient air process for organometal halide perovskite solar cells\",\"authors\":\"Kyungmin Lee, Seungyeon Hong, Hyo Jung Kim\",\"doi\":\"10.1016/j.orgel.2024.107105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Organometal halide perovskite solar cells (PSCs) have achieved power conversion efficiencies (PCE) greater than 26 %, making them attractive photovoltaic devices. However, achieving high-performance PSCs typically requires inert gas conditions and antisolvent processes, which are hurdles to the commercialization of PSCs. To overcome these problems, we adopted a vacuum flash-assisted process (VASP) under ambient air conditions. In addition, to minimize the effect of moisture and enhance crystal growth, we adopted an additive engineering strategy using ammonium salts (NH<sub>4</sub>X, X = I, Cl, and SCN). Among the various ammonium salts, ammonium iodide (NH<sub>4</sub>I) exhibited the best device performance, with a PCE of 19.8 %. The role of the ammonium salts was studied using photoluminescence (PL), scanning electron microscopy (SEM), grazing incidence wide-angle X-ray scattering (GIWAXS), and the device characteristics of the devices. In addition, we measured the wet film state using X-rays to study the effects of ammonium salts on the crystallization process. From these measurements and analyses, we found that the ammonium additives induced rapid crystallization of the perovskite layer, and NH<sub>4</sub>I induced a uniform crystalline state of the film in the vertical direction. The uniformity of the crystalline state was related to the reduction in charge recombination and the enhancement of the PCE in the NH<sub>4</sub>I added devices.</p></div>\",\"PeriodicalId\":399,\"journal\":{\"name\":\"Organic Electronics\",\"volume\":\"133 \",\"pages\":\"Article 107105\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1566119924001162\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566119924001162","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Recombination reduction by ammonium additives in ambient air process for organometal halide perovskite solar cells
Organometal halide perovskite solar cells (PSCs) have achieved power conversion efficiencies (PCE) greater than 26 %, making them attractive photovoltaic devices. However, achieving high-performance PSCs typically requires inert gas conditions and antisolvent processes, which are hurdles to the commercialization of PSCs. To overcome these problems, we adopted a vacuum flash-assisted process (VASP) under ambient air conditions. In addition, to minimize the effect of moisture and enhance crystal growth, we adopted an additive engineering strategy using ammonium salts (NH4X, X = I, Cl, and SCN). Among the various ammonium salts, ammonium iodide (NH4I) exhibited the best device performance, with a PCE of 19.8 %. The role of the ammonium salts was studied using photoluminescence (PL), scanning electron microscopy (SEM), grazing incidence wide-angle X-ray scattering (GIWAXS), and the device characteristics of the devices. In addition, we measured the wet film state using X-rays to study the effects of ammonium salts on the crystallization process. From these measurements and analyses, we found that the ammonium additives induced rapid crystallization of the perovskite layer, and NH4I induced a uniform crystalline state of the film in the vertical direction. The uniformity of the crystalline state was related to the reduction in charge recombination and the enhancement of the PCE in the NH4I added devices.
期刊介绍:
Organic Electronics is a journal whose primary interdisciplinary focus is on materials and phenomena related to organic devices such as light emitting diodes, thin film transistors, photovoltaic cells, sensors, memories, etc.
Papers suitable for publication in this journal cover such topics as photoconductive and electronic properties of organic materials, thin film structures and characterization in the context of organic devices, charge and exciton transport, organic electronic and optoelectronic devices.