{"title":"里奇和积分标量曲率约束下的环的格罗莫夫-豪斯多夫稳定性","authors":"Shouhei Honda , Christian Ketterer , Ilaria Mondello , Raquel Perales , Chiara Rigoni","doi":"10.1016/j.na.2024.113629","DOIUrl":null,"url":null,"abstract":"<div><p>We establish a nonlinear analogue of a splitting map into a Euclidean space, as a harmonic map into a flat torus. We prove that the existence of such a map implies Gromov–Hausdorff closeness to a flat torus in any dimension. Furthermore, Gromov–Hausdorff closeness to a flat torus and an integral bound on <span><math><mrow><msub><mrow><mi>r</mi></mrow><mrow><mi>M</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>, the smallest eigenvalue of the Ricci tensor <span><math><msub><mrow><mo>ric</mo></mrow><mrow><mi>x</mi></mrow></msub></math></span> in <span><math><mi>x</mi></math></span>, imply the existence of a harmonic splitting map. Combining these results with Stern’s inequality, we provide a new Gromov–Hausdorff stability theorem for flat 3-tori. The main tools we employ include the harmonic map heat flow, Ricci flow, and both Ricci limits and RCD theories.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0362546X24001482/pdfft?md5=ba09939bdd60c2c66bc8258ccc472db4&pid=1-s2.0-S0362546X24001482-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Gromov–Hausdorff stability of tori under Ricci and integral scalar curvature bounds\",\"authors\":\"Shouhei Honda , Christian Ketterer , Ilaria Mondello , Raquel Perales , Chiara Rigoni\",\"doi\":\"10.1016/j.na.2024.113629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We establish a nonlinear analogue of a splitting map into a Euclidean space, as a harmonic map into a flat torus. We prove that the existence of such a map implies Gromov–Hausdorff closeness to a flat torus in any dimension. Furthermore, Gromov–Hausdorff closeness to a flat torus and an integral bound on <span><math><mrow><msub><mrow><mi>r</mi></mrow><mrow><mi>M</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>, the smallest eigenvalue of the Ricci tensor <span><math><msub><mrow><mo>ric</mo></mrow><mrow><mi>x</mi></mrow></msub></math></span> in <span><math><mi>x</mi></math></span>, imply the existence of a harmonic splitting map. Combining these results with Stern’s inequality, we provide a new Gromov–Hausdorff stability theorem for flat 3-tori. The main tools we employ include the harmonic map heat flow, Ricci flow, and both Ricci limits and RCD theories.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0362546X24001482/pdfft?md5=ba09939bdd60c2c66bc8258ccc472db4&pid=1-s2.0-S0362546X24001482-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X24001482\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24001482","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Gromov–Hausdorff stability of tori under Ricci and integral scalar curvature bounds
We establish a nonlinear analogue of a splitting map into a Euclidean space, as a harmonic map into a flat torus. We prove that the existence of such a map implies Gromov–Hausdorff closeness to a flat torus in any dimension. Furthermore, Gromov–Hausdorff closeness to a flat torus and an integral bound on , the smallest eigenvalue of the Ricci tensor in , imply the existence of a harmonic splitting map. Combining these results with Stern’s inequality, we provide a new Gromov–Hausdorff stability theorem for flat 3-tori. The main tools we employ include the harmonic map heat flow, Ricci flow, and both Ricci limits and RCD theories.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.