双曲系统 T4 配置的不存在与刘熵条件

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sam G. Krupa , László Székelyhidi Jr.
{"title":"双曲系统 T4 配置的不存在与刘熵条件","authors":"Sam G. Krupa ,&nbsp;László Székelyhidi Jr.","doi":"10.1016/j.aim.2024.109856","DOIUrl":null,"url":null,"abstract":"<div><p>We study the constitutive set <span><math><mi>K</mi></math></span> arising from a <span><math><mn>2</mn><mo>×</mo><mn>2</mn></math></span> system of conservation laws in one space dimension, endowed with one entropy and entropy-flux pair. The convexity properties of the set <span><math><mi>K</mi></math></span> relate to the well-posedness of the underlying system and the ability to construct solutions via convex integration. Relating to the convexity of <span><math><mi>K</mi></math></span>, in the particular case of the <em>p</em>-system, Lorent and Peng (2020) <span><span>[21]</span></span> show that <span><math><mi>K</mi></math></span> does not contain <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> configurations. Recently, Johansson and Tione (2024) <span><span>[14]</span></span> showed that <span><math><mi>K</mi></math></span> does not contain <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span> configurations.</p><p>In this paper, we provide a substantial generalization of Lorent-Peng, based on a careful analysis of the shock curves for a large class of <span><math><mn>2</mn><mo>×</mo><mn>2</mn></math></span> systems. We provide several sets of hypotheses on general systems which can be used to rule out the existence of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> configurations in the constitutive set <span><math><mi>K</mi></math></span>. In particular, our results show the nonexistence of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> configurations for every well-known <span><math><mn>2</mn><mo>×</mo><mn>2</mn></math></span> hyperbolic system of conservation laws for which both families of shocks verify the Liu entropy condition.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0001870824003712/pdfft?md5=0c19a0dff471e6ae0545af1366cf0957&pid=1-s2.0-S0001870824003712-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Nonexistence of T4 configurations for hyperbolic systems and the Liu entropy condition\",\"authors\":\"Sam G. Krupa ,&nbsp;László Székelyhidi Jr.\",\"doi\":\"10.1016/j.aim.2024.109856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the constitutive set <span><math><mi>K</mi></math></span> arising from a <span><math><mn>2</mn><mo>×</mo><mn>2</mn></math></span> system of conservation laws in one space dimension, endowed with one entropy and entropy-flux pair. The convexity properties of the set <span><math><mi>K</mi></math></span> relate to the well-posedness of the underlying system and the ability to construct solutions via convex integration. Relating to the convexity of <span><math><mi>K</mi></math></span>, in the particular case of the <em>p</em>-system, Lorent and Peng (2020) <span><span>[21]</span></span> show that <span><math><mi>K</mi></math></span> does not contain <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> configurations. Recently, Johansson and Tione (2024) <span><span>[14]</span></span> showed that <span><math><mi>K</mi></math></span> does not contain <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span> configurations.</p><p>In this paper, we provide a substantial generalization of Lorent-Peng, based on a careful analysis of the shock curves for a large class of <span><math><mn>2</mn><mo>×</mo><mn>2</mn></math></span> systems. We provide several sets of hypotheses on general systems which can be used to rule out the existence of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> configurations in the constitutive set <span><math><mi>K</mi></math></span>. In particular, our results show the nonexistence of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> configurations for every well-known <span><math><mn>2</mn><mo>×</mo><mn>2</mn></math></span> hyperbolic system of conservation laws for which both families of shocks verify the Liu entropy condition.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0001870824003712/pdfft?md5=0c19a0dff471e6ae0545af1366cf0957&pid=1-s2.0-S0001870824003712-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824003712\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824003712","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了一个空间维度的 2×2 守恒定律系统所产生的构成集 K,该系统具有一对熵和熵流。集合 K 的凸性与基础系统的拟合性以及通过凸积分构造解的能力有关。关于 K 的凸性,在 p 系统的特殊情况下,Lorent 和 Peng (2020) [21] 证明 K 不包含 T4 配置。最近,Johansson 和 Tione (2024) [14]证明 K 不包含 T5 配置。在本文中,我们基于对一大类 2×2 系统的冲击曲线的仔细分析,对 Lorent-Peng 进行了实质性的推广。我们提供了几组关于一般系统的假设,可用于排除构成集 K 中 T4 构型的存在。特别是,我们的结果表明,对于每一个众所周知的 2×2 双曲守恒律系统,T4 构型都不存在,对于这些系统,两族冲击都验证了刘熵条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonexistence of T4 configurations for hyperbolic systems and the Liu entropy condition

We study the constitutive set K arising from a 2×2 system of conservation laws in one space dimension, endowed with one entropy and entropy-flux pair. The convexity properties of the set K relate to the well-posedness of the underlying system and the ability to construct solutions via convex integration. Relating to the convexity of K, in the particular case of the p-system, Lorent and Peng (2020) [21] show that K does not contain T4 configurations. Recently, Johansson and Tione (2024) [14] showed that K does not contain T5 configurations.

In this paper, we provide a substantial generalization of Lorent-Peng, based on a careful analysis of the shock curves for a large class of 2×2 systems. We provide several sets of hypotheses on general systems which can be used to rule out the existence of T4 configurations in the constitutive set K. In particular, our results show the nonexistence of T4 configurations for every well-known 2×2 hyperbolic system of conservation laws for which both families of shocks verify the Liu entropy condition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信