{"title":"具有磨损和单边约束的接触问题的虚拟元素法","authors":"Bangmin Wu , Fei Wang , Weimin Han","doi":"10.1016/j.apnum.2024.08.004","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is dedicated to the numerical solution of a mathematical model that describes frictional quasistatic contact between an elastic body and a moving foundation, with the wear effect on the contact interface of the moving foundation due to friction. The mathematical problem is a system consisting of a time-dependent quasi-variational inequality and an integral equation. The numerical method is based on the use of the virtual element method (VEM) for the spatial discretization of the variational inequality and a variable step-size left rectangle integration formula for the integral equation. The existence and uniqueness of a numerical solution are shown, and optimal order error estimates are derived for both the displacement and the wear function for the lowest order VEM. Numerical results are presented to demonstrate the efficiency of the method and to illustrate the numerical convergence orders.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"206 ","pages":"Pages 29-47"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The virtual element method for a contact problem with wear and unilateral constraint\",\"authors\":\"Bangmin Wu , Fei Wang , Weimin Han\",\"doi\":\"10.1016/j.apnum.2024.08.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper is dedicated to the numerical solution of a mathematical model that describes frictional quasistatic contact between an elastic body and a moving foundation, with the wear effect on the contact interface of the moving foundation due to friction. The mathematical problem is a system consisting of a time-dependent quasi-variational inequality and an integral equation. The numerical method is based on the use of the virtual element method (VEM) for the spatial discretization of the variational inequality and a variable step-size left rectangle integration formula for the integral equation. The existence and uniqueness of a numerical solution are shown, and optimal order error estimates are derived for both the displacement and the wear function for the lowest order VEM. Numerical results are presented to demonstrate the efficiency of the method and to illustrate the numerical convergence orders.</p></div>\",\"PeriodicalId\":8199,\"journal\":{\"name\":\"Applied Numerical Mathematics\",\"volume\":\"206 \",\"pages\":\"Pages 29-47\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424002009\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424002009","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
The virtual element method for a contact problem with wear and unilateral constraint
This paper is dedicated to the numerical solution of a mathematical model that describes frictional quasistatic contact between an elastic body and a moving foundation, with the wear effect on the contact interface of the moving foundation due to friction. The mathematical problem is a system consisting of a time-dependent quasi-variational inequality and an integral equation. The numerical method is based on the use of the virtual element method (VEM) for the spatial discretization of the variational inequality and a variable step-size left rectangle integration formula for the integral equation. The existence and uniqueness of a numerical solution are shown, and optimal order error estimates are derived for both the displacement and the wear function for the lowest order VEM. Numerical results are presented to demonstrate the efficiency of the method and to illustrate the numerical convergence orders.
期刊介绍:
The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are:
(i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments.
(ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers.
(iii) Short notes, which present specific new results and techniques in a brief communication.