具有磨损和单边约束的接触问题的虚拟元素法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Bangmin Wu , Fei Wang , Weimin Han
{"title":"具有磨损和单边约束的接触问题的虚拟元素法","authors":"Bangmin Wu ,&nbsp;Fei Wang ,&nbsp;Weimin Han","doi":"10.1016/j.apnum.2024.08.004","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is dedicated to the numerical solution of a mathematical model that describes frictional quasistatic contact between an elastic body and a moving foundation, with the wear effect on the contact interface of the moving foundation due to friction. The mathematical problem is a system consisting of a time-dependent quasi-variational inequality and an integral equation. The numerical method is based on the use of the virtual element method (VEM) for the spatial discretization of the variational inequality and a variable step-size left rectangle integration formula for the integral equation. The existence and uniqueness of a numerical solution are shown, and optimal order error estimates are derived for both the displacement and the wear function for the lowest order VEM. Numerical results are presented to demonstrate the efficiency of the method and to illustrate the numerical convergence orders.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The virtual element method for a contact problem with wear and unilateral constraint\",\"authors\":\"Bangmin Wu ,&nbsp;Fei Wang ,&nbsp;Weimin Han\",\"doi\":\"10.1016/j.apnum.2024.08.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper is dedicated to the numerical solution of a mathematical model that describes frictional quasistatic contact between an elastic body and a moving foundation, with the wear effect on the contact interface of the moving foundation due to friction. The mathematical problem is a system consisting of a time-dependent quasi-variational inequality and an integral equation. The numerical method is based on the use of the virtual element method (VEM) for the spatial discretization of the variational inequality and a variable step-size left rectangle integration formula for the integral equation. The existence and uniqueness of a numerical solution are shown, and optimal order error estimates are derived for both the displacement and the wear function for the lowest order VEM. Numerical results are presented to demonstrate the efficiency of the method and to illustrate the numerical convergence orders.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424002009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424002009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文致力于对一个数学模型进行数值求解,该模型描述了弹性体与移动地基之间的摩擦准静态接触,以及摩擦对移动地基接触界面的磨损效应。数学问题是一个由随时间变化的准变量不等式和积分方程组成的系统。数值方法的基础是使用虚拟元素法(VEM)对变分不等式进行空间离散化,并使用可变步长左矩形积分公式对积分方程进行计算。结果表明了数值解的存在性和唯一性,并推导出了最低阶 VEM 的位移和磨损函数的最优阶误差估计值。数值结果表明了该方法的效率,并说明了数值收敛阶次。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The virtual element method for a contact problem with wear and unilateral constraint

This paper is dedicated to the numerical solution of a mathematical model that describes frictional quasistatic contact between an elastic body and a moving foundation, with the wear effect on the contact interface of the moving foundation due to friction. The mathematical problem is a system consisting of a time-dependent quasi-variational inequality and an integral equation. The numerical method is based on the use of the virtual element method (VEM) for the spatial discretization of the variational inequality and a variable step-size left rectangle integration formula for the integral equation. The existence and uniqueness of a numerical solution are shown, and optimal order error estimates are derived for both the displacement and the wear function for the lowest order VEM. Numerical results are presented to demonstrate the efficiency of the method and to illustrate the numerical convergence orders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信