Bálint Máté Takács , Gabriella Svantnerné Sebestyén , István Faragó
{"title":"非恒定招募率流行病模型的高阶可靠数值方法","authors":"Bálint Máté Takács , Gabriella Svantnerné Sebestyén , István Faragó","doi":"10.1016/j.apnum.2024.08.008","DOIUrl":null,"url":null,"abstract":"<div><p>The mathematical modeling of the propagation of diseases has an important role from both mathematical and biological points of view. In this article, we observe an SEIR-type model with a general incidence rate and a non-constant recruitment rate function. First, we observe the qualitative properties of the continuous system and then apply different numerical methods: first-order and higher-order strong stability preserving Runge-Kutta methods. We give different conditions under which the numerical schemes preserve the positivity and the boundedness of the continuous-time solution. Then, the theoretical results are demonstrated by some numerical experiments.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"206 ","pages":"Pages 75-93"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168927424002046/pdfft?md5=ab7c63f850963abfd111d6fee1aa69ec&pid=1-s2.0-S0168927424002046-main.pdf","citationCount":"0","resultStr":"{\"title\":\"High-order reliable numerical methods for epidemic models with non-constant recruitment rate\",\"authors\":\"Bálint Máté Takács , Gabriella Svantnerné Sebestyén , István Faragó\",\"doi\":\"10.1016/j.apnum.2024.08.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The mathematical modeling of the propagation of diseases has an important role from both mathematical and biological points of view. In this article, we observe an SEIR-type model with a general incidence rate and a non-constant recruitment rate function. First, we observe the qualitative properties of the continuous system and then apply different numerical methods: first-order and higher-order strong stability preserving Runge-Kutta methods. We give different conditions under which the numerical schemes preserve the positivity and the boundedness of the continuous-time solution. Then, the theoretical results are demonstrated by some numerical experiments.</p></div>\",\"PeriodicalId\":8199,\"journal\":{\"name\":\"Applied Numerical Mathematics\",\"volume\":\"206 \",\"pages\":\"Pages 75-93\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0168927424002046/pdfft?md5=ab7c63f850963abfd111d6fee1aa69ec&pid=1-s2.0-S0168927424002046-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424002046\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424002046","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
High-order reliable numerical methods for epidemic models with non-constant recruitment rate
The mathematical modeling of the propagation of diseases has an important role from both mathematical and biological points of view. In this article, we observe an SEIR-type model with a general incidence rate and a non-constant recruitment rate function. First, we observe the qualitative properties of the continuous system and then apply different numerical methods: first-order and higher-order strong stability preserving Runge-Kutta methods. We give different conditions under which the numerical schemes preserve the positivity and the boundedness of the continuous-time solution. Then, the theoretical results are demonstrated by some numerical experiments.
期刊介绍:
The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are:
(i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments.
(ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers.
(iii) Short notes, which present specific new results and techniques in a brief communication.