非恒定招募率流行病模型的高阶可靠数值方法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Bálint Máté Takács , Gabriella Svantnerné Sebestyén , István Faragó
{"title":"非恒定招募率流行病模型的高阶可靠数值方法","authors":"Bálint Máté Takács ,&nbsp;Gabriella Svantnerné Sebestyén ,&nbsp;István Faragó","doi":"10.1016/j.apnum.2024.08.008","DOIUrl":null,"url":null,"abstract":"<div><p>The mathematical modeling of the propagation of diseases has an important role from both mathematical and biological points of view. In this article, we observe an SEIR-type model with a general incidence rate and a non-constant recruitment rate function. First, we observe the qualitative properties of the continuous system and then apply different numerical methods: first-order and higher-order strong stability preserving Runge-Kutta methods. We give different conditions under which the numerical schemes preserve the positivity and the boundedness of the continuous-time solution. Then, the theoretical results are demonstrated by some numerical experiments.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168927424002046/pdfft?md5=ab7c63f850963abfd111d6fee1aa69ec&pid=1-s2.0-S0168927424002046-main.pdf","citationCount":"0","resultStr":"{\"title\":\"High-order reliable numerical methods for epidemic models with non-constant recruitment rate\",\"authors\":\"Bálint Máté Takács ,&nbsp;Gabriella Svantnerné Sebestyén ,&nbsp;István Faragó\",\"doi\":\"10.1016/j.apnum.2024.08.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The mathematical modeling of the propagation of diseases has an important role from both mathematical and biological points of view. In this article, we observe an SEIR-type model with a general incidence rate and a non-constant recruitment rate function. First, we observe the qualitative properties of the continuous system and then apply different numerical methods: first-order and higher-order strong stability preserving Runge-Kutta methods. We give different conditions under which the numerical schemes preserve the positivity and the boundedness of the continuous-time solution. Then, the theoretical results are demonstrated by some numerical experiments.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0168927424002046/pdfft?md5=ab7c63f850963abfd111d6fee1aa69ec&pid=1-s2.0-S0168927424002046-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424002046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424002046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

从数学和生物学角度来看,疾病传播的数学建模都具有重要作用。本文观察了一个具有一般发病率和非恒定招募率函数的 SEIR 型模型。首先,我们观察连续系统的定性特性,然后应用不同的数值方法:一阶和高阶强稳定性保全 Runge-Kutta 方法。我们给出了数值方案保持连续时间解的正向性和有界性的不同条件。然后,通过一些数值实验证明了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-order reliable numerical methods for epidemic models with non-constant recruitment rate

The mathematical modeling of the propagation of diseases has an important role from both mathematical and biological points of view. In this article, we observe an SEIR-type model with a general incidence rate and a non-constant recruitment rate function. First, we observe the qualitative properties of the continuous system and then apply different numerical methods: first-order and higher-order strong stability preserving Runge-Kutta methods. We give different conditions under which the numerical schemes preserve the positivity and the boundedness of the continuous-time solution. Then, the theoretical results are demonstrated by some numerical experiments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信