Bálint Máté Takács , Gabriella Svantnerné Sebestyén , István Faragó
{"title":"非恒定招募率流行病模型的高阶可靠数值方法","authors":"Bálint Máté Takács , Gabriella Svantnerné Sebestyén , István Faragó","doi":"10.1016/j.apnum.2024.08.008","DOIUrl":null,"url":null,"abstract":"<div><p>The mathematical modeling of the propagation of diseases has an important role from both mathematical and biological points of view. In this article, we observe an SEIR-type model with a general incidence rate and a non-constant recruitment rate function. First, we observe the qualitative properties of the continuous system and then apply different numerical methods: first-order and higher-order strong stability preserving Runge-Kutta methods. We give different conditions under which the numerical schemes preserve the positivity and the boundedness of the continuous-time solution. Then, the theoretical results are demonstrated by some numerical experiments.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168927424002046/pdfft?md5=ab7c63f850963abfd111d6fee1aa69ec&pid=1-s2.0-S0168927424002046-main.pdf","citationCount":"0","resultStr":"{\"title\":\"High-order reliable numerical methods for epidemic models with non-constant recruitment rate\",\"authors\":\"Bálint Máté Takács , Gabriella Svantnerné Sebestyén , István Faragó\",\"doi\":\"10.1016/j.apnum.2024.08.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The mathematical modeling of the propagation of diseases has an important role from both mathematical and biological points of view. In this article, we observe an SEIR-type model with a general incidence rate and a non-constant recruitment rate function. First, we observe the qualitative properties of the continuous system and then apply different numerical methods: first-order and higher-order strong stability preserving Runge-Kutta methods. We give different conditions under which the numerical schemes preserve the positivity and the boundedness of the continuous-time solution. Then, the theoretical results are demonstrated by some numerical experiments.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0168927424002046/pdfft?md5=ab7c63f850963abfd111d6fee1aa69ec&pid=1-s2.0-S0168927424002046-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424002046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424002046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
High-order reliable numerical methods for epidemic models with non-constant recruitment rate
The mathematical modeling of the propagation of diseases has an important role from both mathematical and biological points of view. In this article, we observe an SEIR-type model with a general incidence rate and a non-constant recruitment rate function. First, we observe the qualitative properties of the continuous system and then apply different numerical methods: first-order and higher-order strong stability preserving Runge-Kutta methods. We give different conditions under which the numerical schemes preserve the positivity and the boundedness of the continuous-time solution. Then, the theoretical results are demonstrated by some numerical experiments.