具有对角边界条件的交错六顶点模型的有限尺寸谱

IF 2.5 3区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS
Holger Frahm, Sascha Gehrmann
{"title":"具有对角边界条件的交错六顶点模型的有限尺寸谱","authors":"Holger Frahm,&nbsp;Sascha Gehrmann","doi":"10.1016/j.nuclphysb.2024.116655","DOIUrl":null,"url":null,"abstract":"<div><p>The finite-size spectrum of the critical staggered six-vertex model with antidiagonal boundary conditions is studied. Similar to the case of periodic boundary conditions, we identify three different phases. In two of those, the underlying conformal field theory can be identified to be related to the twisted <span><math><mi>U</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span> Kac-Moody algebra. In contrast, the finite size scaling in the third regime, whose critical behaviour with the (quasi-)periodic BCs is related to the 2d black hole CFTs possessing a non-compact degree of freedom, is more subtle. Here with antidiagonal BCs imposed, the corrections to the scaling of the ground state grow logarithmically with the system size, while the energy gaps appear to close logarithmically. Moreover, we obtain an explicit formula for the Q-operator which is useful for numerical implementation.</p></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1006 ","pages":"Article 116655"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0550321324002219/pdfft?md5=d197b1f1733c8d83e6d34a3386aeb1e1&pid=1-s2.0-S0550321324002219-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Finite-size spectrum of the staggered six-vertex model with antidiagonal boundary conditions\",\"authors\":\"Holger Frahm,&nbsp;Sascha Gehrmann\",\"doi\":\"10.1016/j.nuclphysb.2024.116655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The finite-size spectrum of the critical staggered six-vertex model with antidiagonal boundary conditions is studied. Similar to the case of periodic boundary conditions, we identify three different phases. In two of those, the underlying conformal field theory can be identified to be related to the twisted <span><math><mi>U</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span> Kac-Moody algebra. In contrast, the finite size scaling in the third regime, whose critical behaviour with the (quasi-)periodic BCs is related to the 2d black hole CFTs possessing a non-compact degree of freedom, is more subtle. Here with antidiagonal BCs imposed, the corrections to the scaling of the ground state grow logarithmically with the system size, while the energy gaps appear to close logarithmically. Moreover, we obtain an explicit formula for the Q-operator which is useful for numerical implementation.</p></div>\",\"PeriodicalId\":54712,\"journal\":{\"name\":\"Nuclear Physics B\",\"volume\":\"1006 \",\"pages\":\"Article 116655\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0550321324002219/pdfft?md5=d197b1f1733c8d83e6d34a3386aeb1e1&pid=1-s2.0-S0550321324002219-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Physics B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0550321324002219\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550321324002219","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了具有对角边界条件的临界交错六顶点模型的有限尺寸谱。与周期性边界条件的情况类似,我们发现了三个不同的阶段。在其中两个阶段中,可以确定其基础共形场论与扭曲的 U(1) Kac-Moody 代数有关。相比之下,第三个阶段的有限尺寸缩放更为微妙,其临界行为与(准)周期性共形边界条件有关,与拥有非紧凑自由度的 2d 黑洞 CFT 有关。在这里,由于施加了反对角 BC,基态缩放的修正随系统大小呈对数增长,而能隙似乎呈对数关闭。此外,我们还获得了 Q 操作符的明确公式,这对数值计算非常有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite-size spectrum of the staggered six-vertex model with antidiagonal boundary conditions

The finite-size spectrum of the critical staggered six-vertex model with antidiagonal boundary conditions is studied. Similar to the case of periodic boundary conditions, we identify three different phases. In two of those, the underlying conformal field theory can be identified to be related to the twisted U(1) Kac-Moody algebra. In contrast, the finite size scaling in the third regime, whose critical behaviour with the (quasi-)periodic BCs is related to the 2d black hole CFTs possessing a non-compact degree of freedom, is more subtle. Here with antidiagonal BCs imposed, the corrections to the scaling of the ground state grow logarithmically with the system size, while the energy gaps appear to close logarithmically. Moreover, we obtain an explicit formula for the Q-operator which is useful for numerical implementation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nuclear Physics B
Nuclear Physics B 物理-物理:粒子与场物理
CiteScore
5.50
自引率
7.10%
发文量
302
审稿时长
1 months
期刊介绍: Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信