用于无标记 DNA 感测的高性能电解质门控非晶 InGaZnO 场效应晶体管

IF 4.8 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Hong Liu, Junxin Chen, Jin Hu, Jiajun Song, Peng Lin
{"title":"用于无标记 DNA 感测的高性能电解质门控非晶 InGaZnO 场效应晶体管","authors":"Hong Liu,&nbsp;Junxin Chen,&nbsp;Jin Hu,&nbsp;Jiajun Song,&nbsp;Peng Lin","doi":"10.1016/j.bioelechem.2024.108794","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate, convenient, label-free, and cost-effective biomolecules detection platforms are currently in high demand. In this study, we showcased the utilization of electrolyte-gated InGaZnO field-effect transistors (IGZO FETs) featuring a large on-off current ratio of over 10<sup>6</sup> and a low subthreshold slope of 78.5 mV/dec. In the DNA biosensor, the modification of target DNA changed the effective gate voltage of IGZO FETs, enabling an impressive low detection limit of 0.1 pM and a wide linear detection range from 0.1 pM to 1 μM. This label-free detection method also exhibits high selectivity, allowing for the discrimination of single-base mismatch. Furthermore, the reuse of gate electrodes and channel films offers cost-saving benefits and simplifies device fabrication processes. The electrolyte-gated IGZO FET biosensor presented in this study shows great promise for achieving low-cost and highly sensitive detection of various biomolecules.</p></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"160 ","pages":"Article 108794"},"PeriodicalIF":4.8000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-performance electrolyte-gated amorphous InGaZnO field-effect transistor for label-free DNA sensing\",\"authors\":\"Hong Liu,&nbsp;Junxin Chen,&nbsp;Jin Hu,&nbsp;Jiajun Song,&nbsp;Peng Lin\",\"doi\":\"10.1016/j.bioelechem.2024.108794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Accurate, convenient, label-free, and cost-effective biomolecules detection platforms are currently in high demand. In this study, we showcased the utilization of electrolyte-gated InGaZnO field-effect transistors (IGZO FETs) featuring a large on-off current ratio of over 10<sup>6</sup> and a low subthreshold slope of 78.5 mV/dec. In the DNA biosensor, the modification of target DNA changed the effective gate voltage of IGZO FETs, enabling an impressive low detection limit of 0.1 pM and a wide linear detection range from 0.1 pM to 1 μM. This label-free detection method also exhibits high selectivity, allowing for the discrimination of single-base mismatch. Furthermore, the reuse of gate electrodes and channel films offers cost-saving benefits and simplifies device fabrication processes. The electrolyte-gated IGZO FET biosensor presented in this study shows great promise for achieving low-cost and highly sensitive detection of various biomolecules.</p></div>\",\"PeriodicalId\":252,\"journal\":{\"name\":\"Bioelectrochemistry\",\"volume\":\"160 \",\"pages\":\"Article 108794\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioelectrochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567539424001567\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567539424001567","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目前,准确、便捷、无标记且经济高效的生物大分子检测平台需求量很大。在这项研究中,我们展示了电解质门控 InGaZnO 场效应晶体管(IGZO FET)的应用,它具有超过 106 的大导通电流比和 78.5 mV/dec 的低亚阈值斜率。在 DNA 生物传感器中,对目标 DNA 的修饰改变了 IGZO 场效应晶体管的有效栅极电压,从而实现了令人印象深刻的 0.1 pM 低检测限和从 0.1 pM 到 1 μM 的宽线性检测范围。这种无标记检测方法还具有很高的选择性,可以区分单碱基错配。此外,重复使用栅电极和沟道薄膜还能节省成本,简化器件制造工艺。本研究提出的电解质门控 IGZO FET 生物传感器在实现低成本、高灵敏度地检测各种生物分子方面大有可为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-performance electrolyte-gated amorphous InGaZnO field-effect transistor for label-free DNA sensing

Accurate, convenient, label-free, and cost-effective biomolecules detection platforms are currently in high demand. In this study, we showcased the utilization of electrolyte-gated InGaZnO field-effect transistors (IGZO FETs) featuring a large on-off current ratio of over 106 and a low subthreshold slope of 78.5 mV/dec. In the DNA biosensor, the modification of target DNA changed the effective gate voltage of IGZO FETs, enabling an impressive low detection limit of 0.1 pM and a wide linear detection range from 0.1 pM to 1 μM. This label-free detection method also exhibits high selectivity, allowing for the discrimination of single-base mismatch. Furthermore, the reuse of gate electrodes and channel films offers cost-saving benefits and simplifies device fabrication processes. The electrolyte-gated IGZO FET biosensor presented in this study shows great promise for achieving low-cost and highly sensitive detection of various biomolecules.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioelectrochemistry
Bioelectrochemistry 生物-电化学
CiteScore
9.10
自引率
6.00%
发文量
238
审稿时长
38 days
期刊介绍: An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of: • Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction. • Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms) • Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes) • Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion) • Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair). • Organization and use of arrays in-vitro and in-vivo, including as part of feedback control. • Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信