纳米乳液作为精油的有效输送载体:特性、配制方法、不稳定机制以及在农业食品领域的应用

Amit Kumar , Rohini Kanwar , S.K. Mehta
{"title":"纳米乳液作为精油的有效输送载体:特性、配制方法、不稳定机制以及在农业食品领域的应用","authors":"Amit Kumar ,&nbsp;Rohini Kanwar ,&nbsp;S.K. Mehta","doi":"10.1016/j.nxnano.2024.100096","DOIUrl":null,"url":null,"abstract":"<div><p>The growing interest in the utilization of natural plant-derived products, particularly essential oils as eco-friendly agrochemicals has spurred the consumer demand for clean-label products. Due to their robust antimicrobial and pesticidal properties, essential oils (EOs) exhibit significant potential in food preservation and agricultural applications. However, the poor aqueous stability and highly volatile nature of EOs limit their potential for practical applications in their pure form. In response, nanoemulsions (NEms) have emerged as promising delivery vehicles for EOs, offering advantages such as smaller size, high solubilization capacity, excellent encapsulation efficiency, and controlled release characteristics.</p><p>Here we review the recent advancements in the fabrication, optimization, and stability of EO NEms. The present article provides an in-depth exploration of all the currently available high-energy (ultrasonication, micro fluidization, high-pressure homogenization, rotor-stator mixer) and low-energy (spontaneous emulsification, phase inversion composition, emulsion inversion point, phase inversion temperature) methods being used for the fabrication of NEms and the respective advantages and disadvantages associated with them. Additionally, the review discusses various destabilization mechanisms such as Ostwald ripening, coalescence, etc. that generally impact essential oil NEms, providing a comprehensive understanding of the challenges associated with their stability. Furthermore, the review focuses on the recent practical applications of NEms in the sector of food preservation, flavoring agents, and sustainable agricultural practices.</p></div>","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949829524000573/pdfft?md5=e8b901babbc611143159af82f3a261e0&pid=1-s2.0-S2949829524000573-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Nanoemulsion as an effective delivery vehicle for essential oils: Properties, formulation methods, destabilizing mechanisms and applications in agri-food sector\",\"authors\":\"Amit Kumar ,&nbsp;Rohini Kanwar ,&nbsp;S.K. Mehta\",\"doi\":\"10.1016/j.nxnano.2024.100096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The growing interest in the utilization of natural plant-derived products, particularly essential oils as eco-friendly agrochemicals has spurred the consumer demand for clean-label products. Due to their robust antimicrobial and pesticidal properties, essential oils (EOs) exhibit significant potential in food preservation and agricultural applications. However, the poor aqueous stability and highly volatile nature of EOs limit their potential for practical applications in their pure form. In response, nanoemulsions (NEms) have emerged as promising delivery vehicles for EOs, offering advantages such as smaller size, high solubilization capacity, excellent encapsulation efficiency, and controlled release characteristics.</p><p>Here we review the recent advancements in the fabrication, optimization, and stability of EO NEms. The present article provides an in-depth exploration of all the currently available high-energy (ultrasonication, micro fluidization, high-pressure homogenization, rotor-stator mixer) and low-energy (spontaneous emulsification, phase inversion composition, emulsion inversion point, phase inversion temperature) methods being used for the fabrication of NEms and the respective advantages and disadvantages associated with them. Additionally, the review discusses various destabilization mechanisms such as Ostwald ripening, coalescence, etc. that generally impact essential oil NEms, providing a comprehensive understanding of the challenges associated with their stability. Furthermore, the review focuses on the recent practical applications of NEms in the sector of food preservation, flavoring agents, and sustainable agricultural practices.</p></div>\",\"PeriodicalId\":100959,\"journal\":{\"name\":\"Next Nanotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949829524000573/pdfft?md5=e8b901babbc611143159af82f3a261e0&pid=1-s2.0-S2949829524000573-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949829524000573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949829524000573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人们对利用天然植物衍生产品,尤其是精油作为生态友好型农用化学品的兴趣与日俱增,这也刺激了消费者对清洁标签产品的需求。由于具有强大的抗菌和杀虫特性,精油(EO)在食品保鲜和农业应用中展现出巨大的潜力。然而,由于精油的水稳定性差且极易挥发,限制了其纯形式的实际应用潜力。为此,纳米乳液(NEms)作为有前景的香薰油递送载体应运而生,它具有体积小、溶解能力强、封装效率高和释放可控等优点。本文深入探讨了目前用于制造 NEms 的所有高能(超声、微流化、高压均质、转子-定子混合器)和低能(自发乳化、相反转成分、乳化反转点、相反转温度)方法及其各自的优缺点。此外,综述还讨论了通常会影响精油 NEms 的各种失稳机制,如奥斯特瓦尔德熟化、凝聚等,从而全面了解与 NEms 稳定性相关的挑战。此外,综述还重点介绍了 NEms 最近在食品保鲜、调味剂和可持续农业实践领域的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nanoemulsion as an effective delivery vehicle for essential oils: Properties, formulation methods, destabilizing mechanisms and applications in agri-food sector

The growing interest in the utilization of natural plant-derived products, particularly essential oils as eco-friendly agrochemicals has spurred the consumer demand for clean-label products. Due to their robust antimicrobial and pesticidal properties, essential oils (EOs) exhibit significant potential in food preservation and agricultural applications. However, the poor aqueous stability and highly volatile nature of EOs limit their potential for practical applications in their pure form. In response, nanoemulsions (NEms) have emerged as promising delivery vehicles for EOs, offering advantages such as smaller size, high solubilization capacity, excellent encapsulation efficiency, and controlled release characteristics.

Here we review the recent advancements in the fabrication, optimization, and stability of EO NEms. The present article provides an in-depth exploration of all the currently available high-energy (ultrasonication, micro fluidization, high-pressure homogenization, rotor-stator mixer) and low-energy (spontaneous emulsification, phase inversion composition, emulsion inversion point, phase inversion temperature) methods being used for the fabrication of NEms and the respective advantages and disadvantages associated with them. Additionally, the review discusses various destabilization mechanisms such as Ostwald ripening, coalescence, etc. that generally impact essential oil NEms, providing a comprehensive understanding of the challenges associated with their stability. Furthermore, the review focuses on the recent practical applications of NEms in the sector of food preservation, flavoring agents, and sustainable agricultural practices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信