奇数图和双倍奇数图的特尔维利格代数

IF 0.7 3区 数学 Q2 MATHEMATICS
{"title":"奇数图和双倍奇数图的特尔维利格代数","authors":"","doi":"10.1016/j.disc.2024.114216","DOIUrl":null,"url":null,"abstract":"<div><p>For an integer <span><math><mi>m</mi><mo>≥</mo><mn>1</mn></math></span>, let <span><math><mi>S</mi><mo>=</mo><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mn>2</mn><mi>m</mi><mo>+</mo><mn>1</mn><mo>}</mo></math></span>. Denote by <span><math><mn>2</mn><mo>.</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> the Doubled Odd graph on <em>S</em> with vertex set <span><math><mi>X</mi><mo>:</mo><mo>=</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>S</mi></mtd></mtr><mtr><mtd><mi>m</mi></mtd></mtr></mtable><mo>)</mo></mrow><mo>∪</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>S</mi></mtd></mtr><mtr><mtd><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></mtd></mtr></mtable><mo>)</mo></mrow></math></span>. By folding this graph, one can obtain a new graph called Odd graph <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> with vertex set <span><math><mi>X</mi><mo>:</mo><mo>=</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>S</mi></mtd></mtr><mtr><mtd><mi>m</mi></mtd></mtr></mtable><mo>)</mo></mrow></math></span>. In this paper, we shall study the Terwilliger algebras of <span><math><mn>2</mn><mo>.</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>. We first consider the case of <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>. With respect to any fixed vertex <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mi>X</mi></math></span>, let <span><math><mi>A</mi><mo>:</mo><mo>=</mo><mi>A</mi><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> denote the centralizer algebra of the stabilizer of <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> in the automorphism group of <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>, and <span><math><mi>T</mi><mo>:</mo><mo>=</mo><mi>T</mi><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> the Terwilliger algebra of <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>. For the algebras <span><math><mi>A</mi></math></span> and <span><math><mi>T</mi></math></span>: (i) we construct a basis of <span><math><mi>A</mi></math></span> by the stabilizer of <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> acting on <span><math><mi>X</mi><mo>×</mo><mi>X</mi></math></span>, compute its dimension and show that <span><math><mi>A</mi><mo>=</mo><mi>T</mi></math></span>; (ii) for <span><math><mi>m</mi><mo>≥</mo><mn>3</mn></math></span>, we give all the isomorphism classes of irreducible <span><math><mi>T</mi></math></span>-modules and display the decomposition of <span><math><mi>T</mi></math></span> in a block-diagonal form (up to isomorphism). These results together with the relations between <span><math><mn>2</mn><mo>.</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> allow us to further study the corresponding centralizer algebra and Terwilliger algebra for <span><math><mn>2</mn><mo>.</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>. Consequently, the results in the above (i), (ii) for <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> can be similarly generalized to the case of <span><math><mn>2</mn><mo>.</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>; moreover, we define three subalgebras of the Terwilliger algebra of <span><math><mn>2</mn><mo>.</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> such that their direct sum is just this algebra.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003479/pdfft?md5=8c465dc78658321c3a6c455f5d3877fe&pid=1-s2.0-S0012365X24003479-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The Terwilliger algebras of Odd graphs and Doubled Odd graphs\",\"authors\":\"\",\"doi\":\"10.1016/j.disc.2024.114216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For an integer <span><math><mi>m</mi><mo>≥</mo><mn>1</mn></math></span>, let <span><math><mi>S</mi><mo>=</mo><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mn>2</mn><mi>m</mi><mo>+</mo><mn>1</mn><mo>}</mo></math></span>. Denote by <span><math><mn>2</mn><mo>.</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> the Doubled Odd graph on <em>S</em> with vertex set <span><math><mi>X</mi><mo>:</mo><mo>=</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>S</mi></mtd></mtr><mtr><mtd><mi>m</mi></mtd></mtr></mtable><mo>)</mo></mrow><mo>∪</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>S</mi></mtd></mtr><mtr><mtd><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></mtd></mtr></mtable><mo>)</mo></mrow></math></span>. By folding this graph, one can obtain a new graph called Odd graph <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> with vertex set <span><math><mi>X</mi><mo>:</mo><mo>=</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>S</mi></mtd></mtr><mtr><mtd><mi>m</mi></mtd></mtr></mtable><mo>)</mo></mrow></math></span>. In this paper, we shall study the Terwilliger algebras of <span><math><mn>2</mn><mo>.</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>. We first consider the case of <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>. With respect to any fixed vertex <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mi>X</mi></math></span>, let <span><math><mi>A</mi><mo>:</mo><mo>=</mo><mi>A</mi><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> denote the centralizer algebra of the stabilizer of <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> in the automorphism group of <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>, and <span><math><mi>T</mi><mo>:</mo><mo>=</mo><mi>T</mi><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> the Terwilliger algebra of <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>. For the algebras <span><math><mi>A</mi></math></span> and <span><math><mi>T</mi></math></span>: (i) we construct a basis of <span><math><mi>A</mi></math></span> by the stabilizer of <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> acting on <span><math><mi>X</mi><mo>×</mo><mi>X</mi></math></span>, compute its dimension and show that <span><math><mi>A</mi><mo>=</mo><mi>T</mi></math></span>; (ii) for <span><math><mi>m</mi><mo>≥</mo><mn>3</mn></math></span>, we give all the isomorphism classes of irreducible <span><math><mi>T</mi></math></span>-modules and display the decomposition of <span><math><mi>T</mi></math></span> in a block-diagonal form (up to isomorphism). These results together with the relations between <span><math><mn>2</mn><mo>.</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> allow us to further study the corresponding centralizer algebra and Terwilliger algebra for <span><math><mn>2</mn><mo>.</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>. Consequently, the results in the above (i), (ii) for <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> can be similarly generalized to the case of <span><math><mn>2</mn><mo>.</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>; moreover, we define three subalgebras of the Terwilliger algebra of <span><math><mn>2</mn><mo>.</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> such that their direct sum is just this algebra.</p></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24003479/pdfft?md5=8c465dc78658321c3a6c455f5d3877fe&pid=1-s2.0-S0012365X24003479-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24003479\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24003479","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于整数 m≥1,设 S={1,2,...,2m+1}。用 2.Om+1 表示 S 上的双倍奇数图,其顶点集为 X:=(Sm)∪(Sm+1)。通过折叠这个图,可以得到一个新的图,称为奇数图 Om+1,其顶点集为 X:=(Sm)。在本文中,我们将研究 2.Om+1 和 Om+1 的特尔维利格代数。我们首先考虑 Om+1 的情况。对于任意固定顶点 x0∈X,让 A:=A(x0) 表示 x0 在 Om+1 的自变群中的稳定子的中心化代数,T:=T(x0) 表示 Om+1 的 Terwilliger 代数。对于代数 A 和 T:(i) 我们通过作用于 X×X 的 x0 的稳定器构建 A 的基,计算其维度并证明 A=T;(ii) 对于 m≥3,我们给出不可还原 T 模块的所有同构类,并显示 T 在对角块形式中的分解(直到同构)。这些结果以及 2.Om+1 和 Om+1 之间的关系使我们能够进一步研究 2.Om+1 的相应中心化代数和特尔维利格代数。此外,我们定义了 2.Om+1 的特威里格代数的三个子代数,它们的直接和就是这个代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Terwilliger algebras of Odd graphs and Doubled Odd graphs

For an integer m1, let S={1,2,,2m+1}. Denote by 2.Om+1 the Doubled Odd graph on S with vertex set X:=(Sm)(Sm+1). By folding this graph, one can obtain a new graph called Odd graph Om+1 with vertex set X:=(Sm). In this paper, we shall study the Terwilliger algebras of 2.Om+1 and Om+1. We first consider the case of Om+1. With respect to any fixed vertex x0X, let A:=A(x0) denote the centralizer algebra of the stabilizer of x0 in the automorphism group of Om+1, and T:=T(x0) the Terwilliger algebra of Om+1. For the algebras A and T: (i) we construct a basis of A by the stabilizer of x0 acting on X×X, compute its dimension and show that A=T; (ii) for m3, we give all the isomorphism classes of irreducible T-modules and display the decomposition of T in a block-diagonal form (up to isomorphism). These results together with the relations between 2.Om+1 and Om+1 allow us to further study the corresponding centralizer algebra and Terwilliger algebra for 2.Om+1. Consequently, the results in the above (i), (ii) for Om+1 can be similarly generalized to the case of 2.Om+1; moreover, we define three subalgebras of the Terwilliger algebra of 2.Om+1 such that their direct sum is just this algebra.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信