{"title":"奇数图和双倍奇数图的特尔维利格代数","authors":"","doi":"10.1016/j.disc.2024.114216","DOIUrl":null,"url":null,"abstract":"<div><p>For an integer <span><math><mi>m</mi><mo>≥</mo><mn>1</mn></math></span>, let <span><math><mi>S</mi><mo>=</mo><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mn>2</mn><mi>m</mi><mo>+</mo><mn>1</mn><mo>}</mo></math></span>. Denote by <span><math><mn>2</mn><mo>.</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> the Doubled Odd graph on <em>S</em> with vertex set <span><math><mi>X</mi><mo>:</mo><mo>=</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>S</mi></mtd></mtr><mtr><mtd><mi>m</mi></mtd></mtr></mtable><mo>)</mo></mrow><mo>∪</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>S</mi></mtd></mtr><mtr><mtd><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></mtd></mtr></mtable><mo>)</mo></mrow></math></span>. By folding this graph, one can obtain a new graph called Odd graph <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> with vertex set <span><math><mi>X</mi><mo>:</mo><mo>=</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>S</mi></mtd></mtr><mtr><mtd><mi>m</mi></mtd></mtr></mtable><mo>)</mo></mrow></math></span>. In this paper, we shall study the Terwilliger algebras of <span><math><mn>2</mn><mo>.</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>. We first consider the case of <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>. With respect to any fixed vertex <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mi>X</mi></math></span>, let <span><math><mi>A</mi><mo>:</mo><mo>=</mo><mi>A</mi><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> denote the centralizer algebra of the stabilizer of <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> in the automorphism group of <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>, and <span><math><mi>T</mi><mo>:</mo><mo>=</mo><mi>T</mi><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> the Terwilliger algebra of <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>. For the algebras <span><math><mi>A</mi></math></span> and <span><math><mi>T</mi></math></span>: (i) we construct a basis of <span><math><mi>A</mi></math></span> by the stabilizer of <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> acting on <span><math><mi>X</mi><mo>×</mo><mi>X</mi></math></span>, compute its dimension and show that <span><math><mi>A</mi><mo>=</mo><mi>T</mi></math></span>; (ii) for <span><math><mi>m</mi><mo>≥</mo><mn>3</mn></math></span>, we give all the isomorphism classes of irreducible <span><math><mi>T</mi></math></span>-modules and display the decomposition of <span><math><mi>T</mi></math></span> in a block-diagonal form (up to isomorphism). These results together with the relations between <span><math><mn>2</mn><mo>.</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> allow us to further study the corresponding centralizer algebra and Terwilliger algebra for <span><math><mn>2</mn><mo>.</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>. Consequently, the results in the above (i), (ii) for <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> can be similarly generalized to the case of <span><math><mn>2</mn><mo>.</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>; moreover, we define three subalgebras of the Terwilliger algebra of <span><math><mn>2</mn><mo>.</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> such that their direct sum is just this algebra.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003479/pdfft?md5=8c465dc78658321c3a6c455f5d3877fe&pid=1-s2.0-S0012365X24003479-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The Terwilliger algebras of Odd graphs and Doubled Odd graphs\",\"authors\":\"\",\"doi\":\"10.1016/j.disc.2024.114216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For an integer <span><math><mi>m</mi><mo>≥</mo><mn>1</mn></math></span>, let <span><math><mi>S</mi><mo>=</mo><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mn>2</mn><mi>m</mi><mo>+</mo><mn>1</mn><mo>}</mo></math></span>. Denote by <span><math><mn>2</mn><mo>.</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> the Doubled Odd graph on <em>S</em> with vertex set <span><math><mi>X</mi><mo>:</mo><mo>=</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>S</mi></mtd></mtr><mtr><mtd><mi>m</mi></mtd></mtr></mtable><mo>)</mo></mrow><mo>∪</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>S</mi></mtd></mtr><mtr><mtd><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></mtd></mtr></mtable><mo>)</mo></mrow></math></span>. By folding this graph, one can obtain a new graph called Odd graph <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> with vertex set <span><math><mi>X</mi><mo>:</mo><mo>=</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>S</mi></mtd></mtr><mtr><mtd><mi>m</mi></mtd></mtr></mtable><mo>)</mo></mrow></math></span>. In this paper, we shall study the Terwilliger algebras of <span><math><mn>2</mn><mo>.</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>. We first consider the case of <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>. With respect to any fixed vertex <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mi>X</mi></math></span>, let <span><math><mi>A</mi><mo>:</mo><mo>=</mo><mi>A</mi><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> denote the centralizer algebra of the stabilizer of <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> in the automorphism group of <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>, and <span><math><mi>T</mi><mo>:</mo><mo>=</mo><mi>T</mi><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> the Terwilliger algebra of <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>. For the algebras <span><math><mi>A</mi></math></span> and <span><math><mi>T</mi></math></span>: (i) we construct a basis of <span><math><mi>A</mi></math></span> by the stabilizer of <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> acting on <span><math><mi>X</mi><mo>×</mo><mi>X</mi></math></span>, compute its dimension and show that <span><math><mi>A</mi><mo>=</mo><mi>T</mi></math></span>; (ii) for <span><math><mi>m</mi><mo>≥</mo><mn>3</mn></math></span>, we give all the isomorphism classes of irreducible <span><math><mi>T</mi></math></span>-modules and display the decomposition of <span><math><mi>T</mi></math></span> in a block-diagonal form (up to isomorphism). These results together with the relations between <span><math><mn>2</mn><mo>.</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> allow us to further study the corresponding centralizer algebra and Terwilliger algebra for <span><math><mn>2</mn><mo>.</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>. Consequently, the results in the above (i), (ii) for <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> can be similarly generalized to the case of <span><math><mn>2</mn><mo>.</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>; moreover, we define three subalgebras of the Terwilliger algebra of <span><math><mn>2</mn><mo>.</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> such that their direct sum is just this algebra.</p></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24003479/pdfft?md5=8c465dc78658321c3a6c455f5d3877fe&pid=1-s2.0-S0012365X24003479-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24003479\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24003479","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
The Terwilliger algebras of Odd graphs and Doubled Odd graphs
For an integer , let . Denote by the Doubled Odd graph on S with vertex set . By folding this graph, one can obtain a new graph called Odd graph with vertex set . In this paper, we shall study the Terwilliger algebras of and . We first consider the case of . With respect to any fixed vertex , let denote the centralizer algebra of the stabilizer of in the automorphism group of , and the Terwilliger algebra of . For the algebras and : (i) we construct a basis of by the stabilizer of acting on , compute its dimension and show that ; (ii) for , we give all the isomorphism classes of irreducible -modules and display the decomposition of in a block-diagonal form (up to isomorphism). These results together with the relations between and allow us to further study the corresponding centralizer algebra and Terwilliger algebra for . Consequently, the results in the above (i), (ii) for can be similarly generalized to the case of ; moreover, we define three subalgebras of the Terwilliger algebra of such that their direct sum is just this algebra.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.