随机翻译设计中的复制

Pub Date : 2024-08-03 DOI:10.1016/j.spl.2024.110229
Timothy W. Waite
{"title":"随机翻译设计中的复制","authors":"Timothy W. Waite","doi":"10.1016/j.spl.2024.110229","DOIUrl":null,"url":null,"abstract":"<div><p>Replication is a commonly recommended feature of experimental designs. However, its impact in model-robust design is relatively under-explored; indeed, replication is impossible within the current formulation of random translation designs, which were introduced recently for model-robust prediction. Here we extend the framework of random translation designs to allow replication, and quantify the resulting performance impact. The extension permits a simplification of our earlier heuristic for constructing random translation strategies from a traditional <span><math><mi>V</mi></math></span>-optimal design. Namely, in the previous formulation any replicates of the <span><math><mi>V</mi></math></span>-optimal design first had to be split up before a random translation can be applied to the design points. With the new framework we can instead preserve the replicates instead if we so wish. Surprisingly, we find that in low-dimensional problems it is often substantially more efficient to continue to split replicates, while in high-dimensional problems it can be substantially better to retain replicates.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167715224001986/pdfft?md5=6bf5be484713f5b7cc10b814bce2da60&pid=1-s2.0-S0167715224001986-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Replication in random translation designs\",\"authors\":\"Timothy W. Waite\",\"doi\":\"10.1016/j.spl.2024.110229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Replication is a commonly recommended feature of experimental designs. However, its impact in model-robust design is relatively under-explored; indeed, replication is impossible within the current formulation of random translation designs, which were introduced recently for model-robust prediction. Here we extend the framework of random translation designs to allow replication, and quantify the resulting performance impact. The extension permits a simplification of our earlier heuristic for constructing random translation strategies from a traditional <span><math><mi>V</mi></math></span>-optimal design. Namely, in the previous formulation any replicates of the <span><math><mi>V</mi></math></span>-optimal design first had to be split up before a random translation can be applied to the design points. With the new framework we can instead preserve the replicates instead if we so wish. Surprisingly, we find that in low-dimensional problems it is often substantially more efficient to continue to split replicates, while in high-dimensional problems it can be substantially better to retain replicates.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167715224001986/pdfft?md5=6bf5be484713f5b7cc10b814bce2da60&pid=1-s2.0-S0167715224001986-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167715224001986\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715224001986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

复制是通常推荐的实验设计特征。事实上,在目前的随机翻译设计中,复制是不可能的,而随机翻译设计是最近为稳健模型预测而引入的。在这里,我们扩展了随机翻译设计的框架,允许复制,并量化了由此产生的性能影响。通过扩展,我们可以简化之前从传统 V 最佳设计中构建随机翻译策略的启发式方法。也就是说,在之前的方法中,V 型最优设计的任何副本都必须先拆分,然后才能对设计点进行随机平移。而在新框架下,我们可以按照自己的意愿保留副本。令人惊讶的是,我们发现在低维问题中,继续拆分副本往往会更有效率,而在高维问题中,保留副本可能会更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Replication in random translation designs

Replication is a commonly recommended feature of experimental designs. However, its impact in model-robust design is relatively under-explored; indeed, replication is impossible within the current formulation of random translation designs, which were introduced recently for model-robust prediction. Here we extend the framework of random translation designs to allow replication, and quantify the resulting performance impact. The extension permits a simplification of our earlier heuristic for constructing random translation strategies from a traditional V-optimal design. Namely, in the previous formulation any replicates of the V-optimal design first had to be split up before a random translation can be applied to the design points. With the new framework we can instead preserve the replicates instead if we so wish. Surprisingly, we find that in low-dimensional problems it is often substantially more efficient to continue to split replicates, while in high-dimensional problems it can be substantially better to retain replicates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信