{"title":"具有异质依赖指数成分的并行系统的随机比较","authors":"Ebrahim Amini-Seresht , Baha-Eldin Khaledi , Salman Izadkhah","doi":"10.1016/j.spl.2024.110242","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mrow><mi>X</mi><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>Y</mi><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>Y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>Y</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> be two random vectors with common Archimedean copula with generator function <span><math><mi>ϕ</mi></math></span>, where, for <span><math><mrow><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi></mrow></math></span>, <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is an exponential random variable with hazard rate <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is an exponential random variable with hazard rate <span><math><mi>λ</mi></math></span>. In this paper we prove that under some sufficient conditions on the function <span><math><mi>ϕ</mi></math></span>, the largest order statistic corresponding to <span><math><mi>X</mi></math></span> is larger than that of <span><math><mi>Y</mi></math></span> according to the dispersive ordering and hazard rate ordering. The new results generalized the results in Dykstra et al. (1997) and Khaledi and Kochar (2000). We show that the new results can be applied to some well known Archimedean copulas.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic comparison of parallel systems with heterogeneous dependent exponential components\",\"authors\":\"Ebrahim Amini-Seresht , Baha-Eldin Khaledi , Salman Izadkhah\",\"doi\":\"10.1016/j.spl.2024.110242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mrow><mi>X</mi><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>Y</mi><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>Y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>Y</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> be two random vectors with common Archimedean copula with generator function <span><math><mi>ϕ</mi></math></span>, where, for <span><math><mrow><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi></mrow></math></span>, <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is an exponential random variable with hazard rate <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is an exponential random variable with hazard rate <span><math><mi>λ</mi></math></span>. In this paper we prove that under some sufficient conditions on the function <span><math><mi>ϕ</mi></math></span>, the largest order statistic corresponding to <span><math><mi>X</mi></math></span> is larger than that of <span><math><mi>Y</mi></math></span> according to the dispersive ordering and hazard rate ordering. The new results generalized the results in Dykstra et al. (1997) and Khaledi and Kochar (2000). We show that the new results can be applied to some well known Archimedean copulas.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167715224002116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715224002116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stochastic comparison of parallel systems with heterogeneous dependent exponential components
Let and be two random vectors with common Archimedean copula with generator function , where, for , is an exponential random variable with hazard rate and is an exponential random variable with hazard rate . In this paper we prove that under some sufficient conditions on the function , the largest order statistic corresponding to is larger than that of according to the dispersive ordering and hazard rate ordering. The new results generalized the results in Dykstra et al. (1997) and Khaledi and Kochar (2000). We show that the new results can be applied to some well known Archimedean copulas.