Svetlana Lukáš Petrova*, Vladimir Sincari, Ewa Pavlova, Václav Pokorný, Volodymyr Lobaz and Martin Hrubý,
{"title":"基于聚乳酸 (PLA) 的线性和接枝共聚物通过微流体控制自组装成具有不同形态的纳米颗粒","authors":"Svetlana Lukáš Petrova*, Vladimir Sincari, Ewa Pavlova, Václav Pokorný, Volodymyr Lobaz and Martin Hrubý, ","doi":"10.1021/acspolymersau.4c0003310.1021/acspolymersau.4c00033","DOIUrl":null,"url":null,"abstract":"<p >This study outlines the microfluidic (MF) controlled self-assembly of polylactide (PLA)-based linear and graft copolymers. The PLA-based copolymers (PLA-Cs) were synthesized through a convenient one-pot/one-step ROP/RAFT technique. Three distinct vinyl monomers─triethylene glycol methacrylate (TEGMA), 2-hydroxypropyl methacrylate (HPMA), and <i>N</i>-(2-hydroxypropyl) methacrylamide (HPMAA) were employed to prepare various copolymers: linear thermoresponsive polylactide-<i>b</i>-poly(triethylene glycol methacrylate) (PLA-<i>b</i>-PTEGMA), graft pseudothermoresponsive poly[<i>N</i>-(2-hydroxypropyl)] methacrylate-<i>g</i>-polylactide (PHPMA-<i>g</i>-PLA), and graft amphiphilic poly[<i>N</i>-(2-hydroxypropyl)] methacrylamide-<i>g</i>-polylactide (PHPMAA-<i>g</i>-PLA). The MF technology was utilized for the controlled self-assembly of these PLA-based BCs in a solution, resulting in a range of nanoparticle (NP) morphologies. The thermoresponsive PLA-<i>b</i>-PTEGMA diblock copolymer formed thermodynamically stable micelles (Ms) through kinetically controlled assemblies. Similarly, employing MF channels led to the self-assembly of PHPMA-<i>g</i>-PLA, yielding polymersomes (PSs) with adjustable sizes under the same solution conditions. Conversely, the PHPMAA-<i>g</i>-PLA copolymer generated worm-like particles (Ws). The analysis of resulting nano-objects involves techniques such as transmission electron microscopy, dynamic light scattering investigations (DLS), and small-angle X-ray scattering (SAXS). More specifically, the thermoresponsive behavior of PLA-<i>b</i>-PTEGMA and PHPMA-<i>g</i>-PLA nano-objects is validated through variable-temperature DLS, TEM, and SAXS methods. Furthermore, the study explored the specific interactions between the formed Ms, PSs, and/or Ws with proteins in human blood plasma, utilizing isothermal titration calorimetry.</p>","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"4 4","pages":"331–341 331–341"},"PeriodicalIF":4.7000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acspolymersau.4c00033","citationCount":"0","resultStr":"{\"title\":\"Microfluidic Controlled Self-Assembly of Polylactide (PLA)-Based Linear and Graft Copolymers into Nanoparticles with Diverse Morphologies\",\"authors\":\"Svetlana Lukáš Petrova*, Vladimir Sincari, Ewa Pavlova, Václav Pokorný, Volodymyr Lobaz and Martin Hrubý, \",\"doi\":\"10.1021/acspolymersau.4c0003310.1021/acspolymersau.4c00033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study outlines the microfluidic (MF) controlled self-assembly of polylactide (PLA)-based linear and graft copolymers. The PLA-based copolymers (PLA-Cs) were synthesized through a convenient one-pot/one-step ROP/RAFT technique. Three distinct vinyl monomers─triethylene glycol methacrylate (TEGMA), 2-hydroxypropyl methacrylate (HPMA), and <i>N</i>-(2-hydroxypropyl) methacrylamide (HPMAA) were employed to prepare various copolymers: linear thermoresponsive polylactide-<i>b</i>-poly(triethylene glycol methacrylate) (PLA-<i>b</i>-PTEGMA), graft pseudothermoresponsive poly[<i>N</i>-(2-hydroxypropyl)] methacrylate-<i>g</i>-polylactide (PHPMA-<i>g</i>-PLA), and graft amphiphilic poly[<i>N</i>-(2-hydroxypropyl)] methacrylamide-<i>g</i>-polylactide (PHPMAA-<i>g</i>-PLA). The MF technology was utilized for the controlled self-assembly of these PLA-based BCs in a solution, resulting in a range of nanoparticle (NP) morphologies. The thermoresponsive PLA-<i>b</i>-PTEGMA diblock copolymer formed thermodynamically stable micelles (Ms) through kinetically controlled assemblies. Similarly, employing MF channels led to the self-assembly of PHPMA-<i>g</i>-PLA, yielding polymersomes (PSs) with adjustable sizes under the same solution conditions. Conversely, the PHPMAA-<i>g</i>-PLA copolymer generated worm-like particles (Ws). The analysis of resulting nano-objects involves techniques such as transmission electron microscopy, dynamic light scattering investigations (DLS), and small-angle X-ray scattering (SAXS). More specifically, the thermoresponsive behavior of PLA-<i>b</i>-PTEGMA and PHPMA-<i>g</i>-PLA nano-objects is validated through variable-temperature DLS, TEM, and SAXS methods. Furthermore, the study explored the specific interactions between the formed Ms, PSs, and/or Ws with proteins in human blood plasma, utilizing isothermal titration calorimetry.</p>\",\"PeriodicalId\":72049,\"journal\":{\"name\":\"ACS polymers Au\",\"volume\":\"4 4\",\"pages\":\"331–341 331–341\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acspolymersau.4c00033\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS polymers Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acspolymersau.4c00033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS polymers Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acspolymersau.4c00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Microfluidic Controlled Self-Assembly of Polylactide (PLA)-Based Linear and Graft Copolymers into Nanoparticles with Diverse Morphologies
This study outlines the microfluidic (MF) controlled self-assembly of polylactide (PLA)-based linear and graft copolymers. The PLA-based copolymers (PLA-Cs) were synthesized through a convenient one-pot/one-step ROP/RAFT technique. Three distinct vinyl monomers─triethylene glycol methacrylate (TEGMA), 2-hydroxypropyl methacrylate (HPMA), and N-(2-hydroxypropyl) methacrylamide (HPMAA) were employed to prepare various copolymers: linear thermoresponsive polylactide-b-poly(triethylene glycol methacrylate) (PLA-b-PTEGMA), graft pseudothermoresponsive poly[N-(2-hydroxypropyl)] methacrylate-g-polylactide (PHPMA-g-PLA), and graft amphiphilic poly[N-(2-hydroxypropyl)] methacrylamide-g-polylactide (PHPMAA-g-PLA). The MF technology was utilized for the controlled self-assembly of these PLA-based BCs in a solution, resulting in a range of nanoparticle (NP) morphologies. The thermoresponsive PLA-b-PTEGMA diblock copolymer formed thermodynamically stable micelles (Ms) through kinetically controlled assemblies. Similarly, employing MF channels led to the self-assembly of PHPMA-g-PLA, yielding polymersomes (PSs) with adjustable sizes under the same solution conditions. Conversely, the PHPMAA-g-PLA copolymer generated worm-like particles (Ws). The analysis of resulting nano-objects involves techniques such as transmission electron microscopy, dynamic light scattering investigations (DLS), and small-angle X-ray scattering (SAXS). More specifically, the thermoresponsive behavior of PLA-b-PTEGMA and PHPMA-g-PLA nano-objects is validated through variable-temperature DLS, TEM, and SAXS methods. Furthermore, the study explored the specific interactions between the formed Ms, PSs, and/or Ws with proteins in human blood plasma, utilizing isothermal titration calorimetry.