{"title":"自转录活性调控区测序在增强子发现研究中的原理和应用。","authors":"Ji-Long Wang, Qing Li, Ting-Zheng Zhan","doi":"10.16288/j.yczz.24-149","DOIUrl":null,"url":null,"abstract":"<p><p>Self-transcribing active regulatory region sequencing (STARR-seq) is a high-throughput sequencing method capable of simultaneously discovering and validating all enhancers within the genome. In this method, candidate sequences are inserted into plasmid vectors and electroporated into cells. Acting as both enhancers and target genes, the self-transcription of these sequences will also be enhanced by themselves. By sequencing the transcriptome and comparing the results with the non-inserted control, the locations and activity of enhancers can be determined. In traditional enhancer discovery strategies, the chromatin open regions and transcription active regions were sequenced and predicted as enhancers. However, the activity of these putative enhancers could only be validated one by one without a high-throughput method. STARR-seq solved this limitation, allowing simultaneous enhancers discovery and activity validation in a high-throughput manner. Since the introduction of STARR-seq, it has been widely used to discover enhancers and validate enhancer activity in a number of organisms and cells. In this review, we present the traditional enhancer prediction methods and the basic principles, development history, specific applications of STARR-seq, and its future prospects, aiming to provide a reference for researchers in related fields conducting enhancer studies.</p>","PeriodicalId":35536,"journal":{"name":"遗传","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Principle and application of self-transcribing active regulatory region sequencing in enhancer discovery research.\",\"authors\":\"Ji-Long Wang, Qing Li, Ting-Zheng Zhan\",\"doi\":\"10.16288/j.yczz.24-149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Self-transcribing active regulatory region sequencing (STARR-seq) is a high-throughput sequencing method capable of simultaneously discovering and validating all enhancers within the genome. In this method, candidate sequences are inserted into plasmid vectors and electroporated into cells. Acting as both enhancers and target genes, the self-transcription of these sequences will also be enhanced by themselves. By sequencing the transcriptome and comparing the results with the non-inserted control, the locations and activity of enhancers can be determined. In traditional enhancer discovery strategies, the chromatin open regions and transcription active regions were sequenced and predicted as enhancers. However, the activity of these putative enhancers could only be validated one by one without a high-throughput method. STARR-seq solved this limitation, allowing simultaneous enhancers discovery and activity validation in a high-throughput manner. Since the introduction of STARR-seq, it has been widely used to discover enhancers and validate enhancer activity in a number of organisms and cells. In this review, we present the traditional enhancer prediction methods and the basic principles, development history, specific applications of STARR-seq, and its future prospects, aiming to provide a reference for researchers in related fields conducting enhancer studies.</p>\",\"PeriodicalId\":35536,\"journal\":{\"name\":\"遗传\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"遗传\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://doi.org/10.16288/j.yczz.24-149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"遗传","FirstCategoryId":"1091","ListUrlMain":"https://doi.org/10.16288/j.yczz.24-149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Principle and application of self-transcribing active regulatory region sequencing in enhancer discovery research.
Self-transcribing active regulatory region sequencing (STARR-seq) is a high-throughput sequencing method capable of simultaneously discovering and validating all enhancers within the genome. In this method, candidate sequences are inserted into plasmid vectors and electroporated into cells. Acting as both enhancers and target genes, the self-transcription of these sequences will also be enhanced by themselves. By sequencing the transcriptome and comparing the results with the non-inserted control, the locations and activity of enhancers can be determined. In traditional enhancer discovery strategies, the chromatin open regions and transcription active regions were sequenced and predicted as enhancers. However, the activity of these putative enhancers could only be validated one by one without a high-throughput method. STARR-seq solved this limitation, allowing simultaneous enhancers discovery and activity validation in a high-throughput manner. Since the introduction of STARR-seq, it has been widely used to discover enhancers and validate enhancer activity in a number of organisms and cells. In this review, we present the traditional enhancer prediction methods and the basic principles, development history, specific applications of STARR-seq, and its future prospects, aiming to provide a reference for researchers in related fields conducting enhancer studies.