驾驭蜱虫多样性:整合分子方法,加强控制措施。

IF 1.8 4区 医学 Q3 INFECTIOUS DISEASES
Donath Damian
{"title":"驾驭蜱虫多样性:整合分子方法,加强控制措施。","authors":"Donath Damian","doi":"10.1089/vbz.2024.0052","DOIUrl":null,"url":null,"abstract":"<p><p>The emergence and spread of infectious diseases, particularly zoonotic diseases originating from wildlife, pose significant threats to global health and economy. This review examines the pivotal role of ticks as vectors in transmitting pathogens to humans, livestock, and wildlife and the use of molecular techniques in their identification. Tick infestations result in economic losses through reduced animal productivity, anemia, and quality deterioration of hides. Furthermore, ticks serve as reservoirs for a wide range of pathogens including viruses, bacteria, fungi, protozoa, and nematodes, contributing to the transmission of diseases such as Crimean-Congo hemorrhagic fever, tick-borne encephalitis, and African swine fever among others. The interface between wildlife, livestock, and humans facilitates the transmission of zoonotic pathogens, exacerbated by nomadic and pastoralist lifestyles that promote interactions between wildlife and domestic animals. This movement of animals across landscapes enhances the dispersion of tick vectors, increasing the risk of pathogen exposure for diverse populations. Historically, tick identification in sub-Saharan Africa has relied on morphological characteristics despite limitations such as species overlap and variability. Molecular techniques offer a more precise means of species identification, providing critical data for effective tick and pathogen management strategies. Integrating molecular approaches into tick research enhances our understanding of tick diversity, distribution patterns, and pathogen dynamics. This knowledge is essential for developing targeted interventions to mitigate the impact of tick-borne diseases on public and veterinary health worldwide.</p>","PeriodicalId":23683,"journal":{"name":"Vector borne and zoonotic diseases","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Navigating the Landscape of Tick Diversity: Integrating Molecular Approaches for Enhanced Control Measures.\",\"authors\":\"Donath Damian\",\"doi\":\"10.1089/vbz.2024.0052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The emergence and spread of infectious diseases, particularly zoonotic diseases originating from wildlife, pose significant threats to global health and economy. This review examines the pivotal role of ticks as vectors in transmitting pathogens to humans, livestock, and wildlife and the use of molecular techniques in their identification. Tick infestations result in economic losses through reduced animal productivity, anemia, and quality deterioration of hides. Furthermore, ticks serve as reservoirs for a wide range of pathogens including viruses, bacteria, fungi, protozoa, and nematodes, contributing to the transmission of diseases such as Crimean-Congo hemorrhagic fever, tick-borne encephalitis, and African swine fever among others. The interface between wildlife, livestock, and humans facilitates the transmission of zoonotic pathogens, exacerbated by nomadic and pastoralist lifestyles that promote interactions between wildlife and domestic animals. This movement of animals across landscapes enhances the dispersion of tick vectors, increasing the risk of pathogen exposure for diverse populations. Historically, tick identification in sub-Saharan Africa has relied on morphological characteristics despite limitations such as species overlap and variability. Molecular techniques offer a more precise means of species identification, providing critical data for effective tick and pathogen management strategies. Integrating molecular approaches into tick research enhances our understanding of tick diversity, distribution patterns, and pathogen dynamics. This knowledge is essential for developing targeted interventions to mitigate the impact of tick-borne diseases on public and veterinary health worldwide.</p>\",\"PeriodicalId\":23683,\"journal\":{\"name\":\"Vector borne and zoonotic diseases\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vector borne and zoonotic diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/vbz.2024.0052\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vector borne and zoonotic diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/vbz.2024.0052","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

摘要

传染病的出现和传播,尤其是源自野生动物的人畜共患病,对全球健康和经济构成了重大威胁。本综述探讨了蜱虫作为载体在向人类、牲畜和野生动物传播病原体方面的关键作用,以及分子技术在鉴定蜱虫方面的应用。蜱虫造成的经济损失包括动物生产力下降、贫血和皮革质量下降。此外,蜱虫还是包括病毒、细菌、真菌、原生动物和线虫在内的多种病原体的贮藏地,导致了克里米亚-刚果出血热、蜱传脑炎和非洲猪瘟等疾病的传播。野生动物、牲畜和人类之间的相互接触促进了人畜共患病原体的传播,而游牧和畜牧生活方式又加剧了野生动物和家畜之间的互动。动物在不同地区的移动加剧了蜱虫病媒的传播,增加了不同人群接触病原体的风险。尽管存在物种重叠和变异等局限性,撒哈拉以南非洲地区的蜱虫识别一直依赖于形态特征。分子技术提供了更精确的物种鉴定手段,为有效的蜱虫和病原体管理策略提供了关键数据。将分子方法整合到蜱虫研究中可增强我们对蜱虫多样性、分布模式和病原体动态的了解。这些知识对于制定有针对性的干预措施以减轻蜱传疾病对全球公众和兽医健康的影响至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Navigating the Landscape of Tick Diversity: Integrating Molecular Approaches for Enhanced Control Measures.

The emergence and spread of infectious diseases, particularly zoonotic diseases originating from wildlife, pose significant threats to global health and economy. This review examines the pivotal role of ticks as vectors in transmitting pathogens to humans, livestock, and wildlife and the use of molecular techniques in their identification. Tick infestations result in economic losses through reduced animal productivity, anemia, and quality deterioration of hides. Furthermore, ticks serve as reservoirs for a wide range of pathogens including viruses, bacteria, fungi, protozoa, and nematodes, contributing to the transmission of diseases such as Crimean-Congo hemorrhagic fever, tick-borne encephalitis, and African swine fever among others. The interface between wildlife, livestock, and humans facilitates the transmission of zoonotic pathogens, exacerbated by nomadic and pastoralist lifestyles that promote interactions between wildlife and domestic animals. This movement of animals across landscapes enhances the dispersion of tick vectors, increasing the risk of pathogen exposure for diverse populations. Historically, tick identification in sub-Saharan Africa has relied on morphological characteristics despite limitations such as species overlap and variability. Molecular techniques offer a more precise means of species identification, providing critical data for effective tick and pathogen management strategies. Integrating molecular approaches into tick research enhances our understanding of tick diversity, distribution patterns, and pathogen dynamics. This knowledge is essential for developing targeted interventions to mitigate the impact of tick-borne diseases on public and veterinary health worldwide.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
4.80%
发文量
73
审稿时长
3-8 weeks
期刊介绍: Vector-Borne and Zoonotic Diseases is an authoritative, peer-reviewed journal providing basic and applied research on diseases transmitted to humans by invertebrate vectors or non-human vertebrates. The Journal examines geographic, seasonal, and other risk factors that influence the transmission, diagnosis, management, and prevention of this group of infectious diseases, and identifies global trends that have the potential to result in major epidemics. Vector-Borne and Zoonotic Diseases coverage includes: -Ecology -Entomology -Epidemiology -Infectious diseases -Microbiology -Parasitology -Pathology -Public health -Tropical medicine -Wildlife biology -Bacterial, rickettsial, viral, and parasitic zoonoses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信