Su Jeong Kang, Joung Ouk Ryan Kim, Moon Jong Kim, Yang-Im Hur, Ji-Hee Haam, Kunhee Han, Young-Sang Kim
{"title":"结合健康检查数据和头发矿物质分析的预防性机器学习模型,用于识别低骨量。","authors":"Su Jeong Kang, Joung Ouk Ryan Kim, Moon Jong Kim, Yang-Im Hur, Ji-Hee Haam, Kunhee Han, Young-Sang Kim","doi":"10.1038/s41598-024-69090-3","DOIUrl":null,"url":null,"abstract":"<p><p>Machine learning (ML) models have been increasingly employed to predict osteoporosis. However, the incorporation of hair minerals into ML models remains unexplored. This study aimed to develop ML models for predicting low bone mass (LBM) using health checkup data and hair mineral analysis. A total of 1206 postmenopausal women and 820 men aged 50 years or older at a health promotion center were included in this study. LBM was defined as a T-score below - 1 at the lumbar, femur neck, or total hip area. The proportion of individuals with LBM was 59.4% (n = 1205). The features used in the models comprised 50 health checkup items and 22 hair minerals. The ML algorithms employed were Extreme Gradient Boosting (XGB), Random Forest (RF), Gradient Boosting (GB), and Adaptive Boosting (AdaBoost). The subjects were divided into training and test datasets with an 80:20 ratio. The area under the receiver operating characteristic curve (AUROC), accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and an F1 score were evaluated to measure the performances of the models. Through 50 repetitions, the mean (standard deviation) AUROC for LBM was 0.744 (± 0.021) for XGB, the highest among the models, followed by 0.737 (± 0.023) for AdaBoost, and 0.733 (± 0.023) for GB, and 0.732 (± 0.021) for RF. The XGB model had an accuracy of 68.7%, sensitivity of 80.7%, specificity of 51.1%, PPV of 70.9%, NPV of 64.3%, and an F1 score of 0.754. However, these performance metrics did not demonstrate notable differences among the models. The XGB model identified sulfur, sodium, mercury, copper, magnesium, arsenic, and phosphate as crucial hair mineral features. The study findings emphasize the significance of employing ML algorithms for predicting LBM. Integrating health checkup data and hair mineral analysis into these models may provide valuable insights into identifying individuals at risk of LBM.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"18792"},"PeriodicalIF":3.9000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11322645/pdf/","citationCount":"0","resultStr":"{\"title\":\"Preventive machine learning models incorporating health checkup data and hair mineral analysis for low bone mass identification.\",\"authors\":\"Su Jeong Kang, Joung Ouk Ryan Kim, Moon Jong Kim, Yang-Im Hur, Ji-Hee Haam, Kunhee Han, Young-Sang Kim\",\"doi\":\"10.1038/s41598-024-69090-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Machine learning (ML) models have been increasingly employed to predict osteoporosis. However, the incorporation of hair minerals into ML models remains unexplored. This study aimed to develop ML models for predicting low bone mass (LBM) using health checkup data and hair mineral analysis. A total of 1206 postmenopausal women and 820 men aged 50 years or older at a health promotion center were included in this study. LBM was defined as a T-score below - 1 at the lumbar, femur neck, or total hip area. The proportion of individuals with LBM was 59.4% (n = 1205). The features used in the models comprised 50 health checkup items and 22 hair minerals. The ML algorithms employed were Extreme Gradient Boosting (XGB), Random Forest (RF), Gradient Boosting (GB), and Adaptive Boosting (AdaBoost). The subjects were divided into training and test datasets with an 80:20 ratio. The area under the receiver operating characteristic curve (AUROC), accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and an F1 score were evaluated to measure the performances of the models. Through 50 repetitions, the mean (standard deviation) AUROC for LBM was 0.744 (± 0.021) for XGB, the highest among the models, followed by 0.737 (± 0.023) for AdaBoost, and 0.733 (± 0.023) for GB, and 0.732 (± 0.021) for RF. The XGB model had an accuracy of 68.7%, sensitivity of 80.7%, specificity of 51.1%, PPV of 70.9%, NPV of 64.3%, and an F1 score of 0.754. However, these performance metrics did not demonstrate notable differences among the models. The XGB model identified sulfur, sodium, mercury, copper, magnesium, arsenic, and phosphate as crucial hair mineral features. The study findings emphasize the significance of employing ML algorithms for predicting LBM. Integrating health checkup data and hair mineral analysis into these models may provide valuable insights into identifying individuals at risk of LBM.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"14 1\",\"pages\":\"18792\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11322645/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-69090-3\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-69090-3","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Preventive machine learning models incorporating health checkup data and hair mineral analysis for low bone mass identification.
Machine learning (ML) models have been increasingly employed to predict osteoporosis. However, the incorporation of hair minerals into ML models remains unexplored. This study aimed to develop ML models for predicting low bone mass (LBM) using health checkup data and hair mineral analysis. A total of 1206 postmenopausal women and 820 men aged 50 years or older at a health promotion center were included in this study. LBM was defined as a T-score below - 1 at the lumbar, femur neck, or total hip area. The proportion of individuals with LBM was 59.4% (n = 1205). The features used in the models comprised 50 health checkup items and 22 hair minerals. The ML algorithms employed were Extreme Gradient Boosting (XGB), Random Forest (RF), Gradient Boosting (GB), and Adaptive Boosting (AdaBoost). The subjects were divided into training and test datasets with an 80:20 ratio. The area under the receiver operating characteristic curve (AUROC), accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and an F1 score were evaluated to measure the performances of the models. Through 50 repetitions, the mean (standard deviation) AUROC for LBM was 0.744 (± 0.021) for XGB, the highest among the models, followed by 0.737 (± 0.023) for AdaBoost, and 0.733 (± 0.023) for GB, and 0.732 (± 0.021) for RF. The XGB model had an accuracy of 68.7%, sensitivity of 80.7%, specificity of 51.1%, PPV of 70.9%, NPV of 64.3%, and an F1 score of 0.754. However, these performance metrics did not demonstrate notable differences among the models. The XGB model identified sulfur, sodium, mercury, copper, magnesium, arsenic, and phosphate as crucial hair mineral features. The study findings emphasize the significance of employing ML algorithms for predicting LBM. Integrating health checkup data and hair mineral analysis into these models may provide valuable insights into identifying individuals at risk of LBM.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.