大型语言模型如何回答乳腺癌问答题?GPT-3.5、GPT-4 和 Google Gemini 的比较研究。

IF 9.7 1区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Radiologia Medica Pub Date : 2024-10-01 Epub Date: 2024-08-13 DOI:10.1007/s11547-024-01872-1
Giovanni Irmici, Andrea Cozzi, Gianmarco Della Pepa, Claudia De Berardinis, Elisa D'Ascoli, Michaela Cellina, Maurizio Cè, Catherine Depretto, Gianfranco Scaperrotta
{"title":"大型语言模型如何回答乳腺癌问答题?GPT-3.5、GPT-4 和 Google Gemini 的比较研究。","authors":"Giovanni Irmici, Andrea Cozzi, Gianmarco Della Pepa, Claudia De Berardinis, Elisa D'Ascoli, Michaela Cellina, Maurizio Cè, Catherine Depretto, Gianfranco Scaperrotta","doi":"10.1007/s11547-024-01872-1","DOIUrl":null,"url":null,"abstract":"<p><p>Applications of large language models (LLMs) in the healthcare field have shown promising results in processing and summarizing multidisciplinary information. This study evaluated the ability of three publicly available LLMs (GPT-3.5, GPT-4, and Google Gemini-then called Bard) to answer 60 multiple-choice questions (29 sourced from public databases, 31 newly formulated by experienced breast radiologists) about different aspects of breast cancer care: treatment and prognosis, diagnostic and interventional techniques, imaging interpretation, and pathology. Overall, the rate of correct answers significantly differed among LLMs (p = 0.010): the best performance was achieved by GPT-4 (95%, 57/60) followed by GPT-3.5 (90%, 54/60) and Google Gemini (80%, 48/60). Across all LLMs, no significant differences were observed in the rates of correct replies to questions sourced from public databases and newly formulated ones (p ≥ 0.593). These results highlight the potential benefits of LLMs in breast cancer care, which will need to be further refined through in-context training.</p>","PeriodicalId":20817,"journal":{"name":"Radiologia Medica","volume":" ","pages":"1463-1467"},"PeriodicalIF":9.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How do large language models answer breast cancer quiz questions? A comparative study of GPT-3.5, GPT-4 and Google Gemini.\",\"authors\":\"Giovanni Irmici, Andrea Cozzi, Gianmarco Della Pepa, Claudia De Berardinis, Elisa D'Ascoli, Michaela Cellina, Maurizio Cè, Catherine Depretto, Gianfranco Scaperrotta\",\"doi\":\"10.1007/s11547-024-01872-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Applications of large language models (LLMs) in the healthcare field have shown promising results in processing and summarizing multidisciplinary information. This study evaluated the ability of three publicly available LLMs (GPT-3.5, GPT-4, and Google Gemini-then called Bard) to answer 60 multiple-choice questions (29 sourced from public databases, 31 newly formulated by experienced breast radiologists) about different aspects of breast cancer care: treatment and prognosis, diagnostic and interventional techniques, imaging interpretation, and pathology. Overall, the rate of correct answers significantly differed among LLMs (p = 0.010): the best performance was achieved by GPT-4 (95%, 57/60) followed by GPT-3.5 (90%, 54/60) and Google Gemini (80%, 48/60). Across all LLMs, no significant differences were observed in the rates of correct replies to questions sourced from public databases and newly formulated ones (p ≥ 0.593). These results highlight the potential benefits of LLMs in breast cancer care, which will need to be further refined through in-context training.</p>\",\"PeriodicalId\":20817,\"journal\":{\"name\":\"Radiologia Medica\",\"volume\":\" \",\"pages\":\"1463-1467\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiologia Medica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11547-024-01872-1\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiologia Medica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11547-024-01872-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

大型语言模型(LLMs)在医疗保健领域的应用已显示出处理和总结多学科信息的良好效果。本研究评估了三种公开的 LLM(GPT-3.5、GPT-4 和 Google Gemini--当时称为 Bard)回答 60 道多选题的能力(29 道来自公共数据库,31 道由经验丰富的乳腺放射科医生新提出),这些多选题涉及乳腺癌治疗的不同方面:治疗和预后、诊断和介入技术、成像解释和病理学。总体而言,不同 LLM 的正确率存在显著差异(p = 0.010):GPT-4(95%,57/60)表现最佳,其次是 GPT-3.5(90%,54/60)和 Google Gemini(80%,48/60)。在所有 LLM 中,来自公共数据库的问题和新提出的问题的正确回答率没有明显差异(p ≥ 0.593)。这些结果凸显了 LLMs 在乳腺癌护理中的潜在优势,需要通过情境培训进一步完善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

How do large language models answer breast cancer quiz questions? A comparative study of GPT-3.5, GPT-4 and Google Gemini.

How do large language models answer breast cancer quiz questions? A comparative study of GPT-3.5, GPT-4 and Google Gemini.

Applications of large language models (LLMs) in the healthcare field have shown promising results in processing and summarizing multidisciplinary information. This study evaluated the ability of three publicly available LLMs (GPT-3.5, GPT-4, and Google Gemini-then called Bard) to answer 60 multiple-choice questions (29 sourced from public databases, 31 newly formulated by experienced breast radiologists) about different aspects of breast cancer care: treatment and prognosis, diagnostic and interventional techniques, imaging interpretation, and pathology. Overall, the rate of correct answers significantly differed among LLMs (p = 0.010): the best performance was achieved by GPT-4 (95%, 57/60) followed by GPT-3.5 (90%, 54/60) and Google Gemini (80%, 48/60). Across all LLMs, no significant differences were observed in the rates of correct replies to questions sourced from public databases and newly formulated ones (p ≥ 0.593). These results highlight the potential benefits of LLMs in breast cancer care, which will need to be further refined through in-context training.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radiologia Medica
Radiologia Medica 医学-核医学
CiteScore
14.10
自引率
7.90%
发文量
133
审稿时长
4-8 weeks
期刊介绍: Felice Perussia founded La radiologia medica in 1914. It is a peer-reviewed journal and serves as the official journal of the Italian Society of Medical and Interventional Radiology (SIRM). The primary purpose of the journal is to disseminate information related to Radiology, especially advancements in diagnostic imaging and related disciplines. La radiologia medica welcomes original research on both fundamental and clinical aspects of modern radiology, with a particular focus on diagnostic and interventional imaging techniques. It also covers topics such as radiotherapy, nuclear medicine, radiobiology, health physics, and artificial intelligence in the context of clinical implications. The journal includes various types of contributions such as original articles, review articles, editorials, short reports, and letters to the editor. With an esteemed Editorial Board and a selection of insightful reports, the journal is an indispensable resource for radiologists and professionals in related fields. Ultimately, La radiologia medica aims to serve as a platform for international collaboration and knowledge sharing within the radiological community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信