Yingshu Peng, Yuxia Zhou, Li Zhang, Hongyan Fu, Guimei Tang, Guolin Huang, Weidong Li
{"title":"兰花 2024:栽培品种级数据集和中国蕙兰精细分类方法。","authors":"Yingshu Peng, Yuxia Zhou, Li Zhang, Hongyan Fu, Guimei Tang, Guolin Huang, Weidong Li","doi":"10.1186/s13007-024-01252-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Chinese Cymbidium orchids, cherished for their deep-rooted cultural significance and significant economic value in China, have spawned a rich tapestry of cultivars. However, these orchid cultivars are facing challenges from insufficient cultivation practices and antiquated techniques, including cultivar misclassification, complex identification, and the proliferation of counterfeit products. Current commercial techniques and academic research primarily emphasize species identification of orchids, rather than delving into that of orchid cultivars within species.</p><p><strong>Results: </strong>To bridge this gap, the authors dedicated over a year to collecting a cultivar image dataset for Chinese Cymbidium orchids named Orchid2024. This dataset contains over 150,000 images spanning 1,275 different categories, involving visits to 20 cities across 12 provincial administrative regions in China to gather pertinent data. Subsequently, we introduced various visual parameter-efficient fine-tuning (PEFT) methods to expedite model development, achieving the highest top-1 accuracy of 86.14% and top-5 accuracy of 95.44%.</p><p><strong>Conclusion: </strong>Experimental results demonstrate the complexity of the dataset while highlighting the considerable promise of PEFT methods within flower image classification. We believe that our work not only provides a practical tool for orchid researchers, growers and market participants, but also provides a unique and valuable resource for further exploring fine-grained image classification tasks. The dataset and code are available at https://github.com/pengyingshu/Orchid2024 .</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"124"},"PeriodicalIF":4.7000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11320945/pdf/","citationCount":"0","resultStr":"{\"title\":\"Orchid2024: A cultivar-level dataset and methodology for fine-grained classification of Chinese Cymbidium Orchids.\",\"authors\":\"Yingshu Peng, Yuxia Zhou, Li Zhang, Hongyan Fu, Guimei Tang, Guolin Huang, Weidong Li\",\"doi\":\"10.1186/s13007-024-01252-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Chinese Cymbidium orchids, cherished for their deep-rooted cultural significance and significant economic value in China, have spawned a rich tapestry of cultivars. However, these orchid cultivars are facing challenges from insufficient cultivation practices and antiquated techniques, including cultivar misclassification, complex identification, and the proliferation of counterfeit products. Current commercial techniques and academic research primarily emphasize species identification of orchids, rather than delving into that of orchid cultivars within species.</p><p><strong>Results: </strong>To bridge this gap, the authors dedicated over a year to collecting a cultivar image dataset for Chinese Cymbidium orchids named Orchid2024. This dataset contains over 150,000 images spanning 1,275 different categories, involving visits to 20 cities across 12 provincial administrative regions in China to gather pertinent data. Subsequently, we introduced various visual parameter-efficient fine-tuning (PEFT) methods to expedite model development, achieving the highest top-1 accuracy of 86.14% and top-5 accuracy of 95.44%.</p><p><strong>Conclusion: </strong>Experimental results demonstrate the complexity of the dataset while highlighting the considerable promise of PEFT methods within flower image classification. We believe that our work not only provides a practical tool for orchid researchers, growers and market participants, but also provides a unique and valuable resource for further exploring fine-grained image classification tasks. The dataset and code are available at https://github.com/pengyingshu/Orchid2024 .</p>\",\"PeriodicalId\":20100,\"journal\":{\"name\":\"Plant Methods\",\"volume\":\"20 1\",\"pages\":\"124\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11320945/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13007-024-01252-w\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-024-01252-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Orchid2024: A cultivar-level dataset and methodology for fine-grained classification of Chinese Cymbidium Orchids.
Background: Chinese Cymbidium orchids, cherished for their deep-rooted cultural significance and significant economic value in China, have spawned a rich tapestry of cultivars. However, these orchid cultivars are facing challenges from insufficient cultivation practices and antiquated techniques, including cultivar misclassification, complex identification, and the proliferation of counterfeit products. Current commercial techniques and academic research primarily emphasize species identification of orchids, rather than delving into that of orchid cultivars within species.
Results: To bridge this gap, the authors dedicated over a year to collecting a cultivar image dataset for Chinese Cymbidium orchids named Orchid2024. This dataset contains over 150,000 images spanning 1,275 different categories, involving visits to 20 cities across 12 provincial administrative regions in China to gather pertinent data. Subsequently, we introduced various visual parameter-efficient fine-tuning (PEFT) methods to expedite model development, achieving the highest top-1 accuracy of 86.14% and top-5 accuracy of 95.44%.
Conclusion: Experimental results demonstrate the complexity of the dataset while highlighting the considerable promise of PEFT methods within flower image classification. We believe that our work not only provides a practical tool for orchid researchers, growers and market participants, but also provides a unique and valuable resource for further exploring fine-grained image classification tasks. The dataset and code are available at https://github.com/pengyingshu/Orchid2024 .
期刊介绍:
Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences.
There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics.
Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.