Ludovic Keiser, Benjamin Dollet, Philippe Marmottant
{"title":"栓子在 Adiantum 叶片和带收缩的生物模拟系统中传播。","authors":"Ludovic Keiser, Benjamin Dollet, Philippe Marmottant","doi":"10.1098/rsif.2024.0103","DOIUrl":null,"url":null,"abstract":"<p><p>Drought poses a significant threat to forest survival worldwide by potentially generating air bubbles that obstruct sap transport within plants' hydraulic systems. However, the detailed mechanism of air entry and propagation at the scale of the veins remains elusive. Building upon a biomimetic model of leaf which we developed, we propose a direct comparison of the air embolism propagation in <i>Adiantum</i> (maidenhair fern) leaves, presented in Brodribb <i>et al</i>. (Brodribb TJ, Bienaimé D, Marmottant P. 2016 Revealing catastrophic failure of leaf networks under stress. <i>Proc. Natl Acad. Sci. USA</i> <b>113</b>, 4865-4869 (doi:10.1073/pnas.1522569113)) and in our biomimetic leaves. In particular, we evidence that the jerky dynamics of the embolism propagation observed in <i>Adiantum</i> leaves can be recovered through the introduction of micrometric constrictions in the section of our biomimetic veins, mimicking the nanopores present in the bordered pit membranes in real leaves. We show that the intermittency in the propagation can be retrieved by a simple model coupling the variations of pressure induced by the constrictions and the variations of the volume of the compliant microchannels. Our study marks a step with the design of a biomimetic leaf that reproduces particular aspects of embolism propagation in real leaves, using a minimal set of controllable and readily tunable components. This biomimetic leaf constitutes a promising physical analogue and sets the stage for future enhancements to fully embody the unique physical features of embolizing real leaves.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"21 217","pages":"20240103"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11323083/pdf/","citationCount":"0","resultStr":"{\"title\":\"Embolism propagation in <i>Adiantum</i> leaves and in a biomimetic system with constrictions.\",\"authors\":\"Ludovic Keiser, Benjamin Dollet, Philippe Marmottant\",\"doi\":\"10.1098/rsif.2024.0103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Drought poses a significant threat to forest survival worldwide by potentially generating air bubbles that obstruct sap transport within plants' hydraulic systems. However, the detailed mechanism of air entry and propagation at the scale of the veins remains elusive. Building upon a biomimetic model of leaf which we developed, we propose a direct comparison of the air embolism propagation in <i>Adiantum</i> (maidenhair fern) leaves, presented in Brodribb <i>et al</i>. (Brodribb TJ, Bienaimé D, Marmottant P. 2016 Revealing catastrophic failure of leaf networks under stress. <i>Proc. Natl Acad. Sci. USA</i> <b>113</b>, 4865-4869 (doi:10.1073/pnas.1522569113)) and in our biomimetic leaves. In particular, we evidence that the jerky dynamics of the embolism propagation observed in <i>Adiantum</i> leaves can be recovered through the introduction of micrometric constrictions in the section of our biomimetic veins, mimicking the nanopores present in the bordered pit membranes in real leaves. We show that the intermittency in the propagation can be retrieved by a simple model coupling the variations of pressure induced by the constrictions and the variations of the volume of the compliant microchannels. Our study marks a step with the design of a biomimetic leaf that reproduces particular aspects of embolism propagation in real leaves, using a minimal set of controllable and readily tunable components. This biomimetic leaf constitutes a promising physical analogue and sets the stage for future enhancements to fully embody the unique physical features of embolizing real leaves.</p>\",\"PeriodicalId\":17488,\"journal\":{\"name\":\"Journal of The Royal Society Interface\",\"volume\":\"21 217\",\"pages\":\"20240103\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11323083/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Royal Society Interface\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsif.2024.0103\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0103","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
干旱可能产生气泡,阻碍植物液压系统中的树液运输,从而对全球森林的生存构成重大威胁。然而,空气进入叶脉并在叶脉尺度上传播的详细机制仍然难以捉摸。在我们开发的叶片生物模拟模型的基础上,我们提出了直接比较 Adiantum(女贞蕨)叶片中空气栓塞传播的方法,该方法在 Brodribb 等人(Brodribb TJ, Bienaimé D, Marmottant P. 2016 Revealing catastrophic failure of leaf networks under stress.Proc.Natl Acad.USA 113, 4865-4869 (doi:10.1073/pnas.1522569113) )和我们的仿生叶片中。我们特别证明,通过在生物仿真叶脉截面上引入微米级收缩,模拟真实叶片上有边坑膜中存在的纳米孔,可以恢复在 Adiantum 叶片上观察到的栓塞传播的生涩动态。我们的研究表明,通过一个简单的模型,将收缩引起的压力变化与顺应性微通道的体积变化结合起来,就能找回传播的间歇性。我们的研究标志着在设计生物仿真叶片方面迈出了一步,这种叶片可以利用一组最小的可控和易调元件,再现栓子在真实叶片中传播的特定方面。这种生物仿真叶片是一种很有前景的物理模拟,并为未来的改进奠定了基础,以充分体现栓塞真实叶片的独特物理特征。
Embolism propagation in Adiantum leaves and in a biomimetic system with constrictions.
Drought poses a significant threat to forest survival worldwide by potentially generating air bubbles that obstruct sap transport within plants' hydraulic systems. However, the detailed mechanism of air entry and propagation at the scale of the veins remains elusive. Building upon a biomimetic model of leaf which we developed, we propose a direct comparison of the air embolism propagation in Adiantum (maidenhair fern) leaves, presented in Brodribb et al. (Brodribb TJ, Bienaimé D, Marmottant P. 2016 Revealing catastrophic failure of leaf networks under stress. Proc. Natl Acad. Sci. USA113, 4865-4869 (doi:10.1073/pnas.1522569113)) and in our biomimetic leaves. In particular, we evidence that the jerky dynamics of the embolism propagation observed in Adiantum leaves can be recovered through the introduction of micrometric constrictions in the section of our biomimetic veins, mimicking the nanopores present in the bordered pit membranes in real leaves. We show that the intermittency in the propagation can be retrieved by a simple model coupling the variations of pressure induced by the constrictions and the variations of the volume of the compliant microchannels. Our study marks a step with the design of a biomimetic leaf that reproduces particular aspects of embolism propagation in real leaves, using a minimal set of controllable and readily tunable components. This biomimetic leaf constitutes a promising physical analogue and sets the stage for future enhancements to fully embody the unique physical features of embolizing real leaves.
期刊介绍:
J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.