{"title":"基于比率计量双荧光传感器的金属有机框架,用于抗坏血酸的精确定量和现场目视检测。","authors":"Hongping Jia, Qianyi Li, Zuopeng Li, Min Wang, Sanbing Zhang, Zhiqiang Zhang","doi":"10.1007/s10895-024-03899-z","DOIUrl":null,"url":null,"abstract":"<p><p>Ascorbic acid is very important to the metabolic process of the body, but excessive intake can lead to diarrhea, kidney calculi and stomach cramps. However, complicated production procedures and harsh experimental settings limit many detection methods, and a simpler and more accurate measurement method is needed. In this study, a smartphone-assisted ratiometric fluorescence sensor was developed for the portable analysis of ascorbic acid. Leveraging the catalytic properties of MIL-53(Fe) to expedite the conversion of H<sub>2</sub>O<sub>2</sub> into hydroxyl radicals, thereby facilitating the oxidation of o-phenylenediamine and terephthalic acid bridging ligand. The sensor showcased exceptional sensitivity in detecting ascorbic acid within a linear range of 0.3-100 µM, boasting an impressive limit of detection at 0.15 µM. Furthermore, through the utilization of color extraction RGB values captured by smartphones, accurate detection of ascorbic acid was achieved with a detection limit of 0.4 µM. Real fruit samples exhibited robust spiked recovery rates ranging from 91 to 119%, accompanied by relative standard deviations ≤ 4.7%. The MIL-53(Fe) nanozyme-based smartphone-assisted ratiometric fluorescence sensor offers an ascorbic acid fluorescence detection device that is visible, accurate, sensitive, and reasonably priced.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":"4911-4920"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metal-Organic Framework Based on Ratiometric dual-Fluorescent Sensor Using for Accurate Quantification and on-Site Visual Detection of Ascorbic Acid.\",\"authors\":\"Hongping Jia, Qianyi Li, Zuopeng Li, Min Wang, Sanbing Zhang, Zhiqiang Zhang\",\"doi\":\"10.1007/s10895-024-03899-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ascorbic acid is very important to the metabolic process of the body, but excessive intake can lead to diarrhea, kidney calculi and stomach cramps. However, complicated production procedures and harsh experimental settings limit many detection methods, and a simpler and more accurate measurement method is needed. In this study, a smartphone-assisted ratiometric fluorescence sensor was developed for the portable analysis of ascorbic acid. Leveraging the catalytic properties of MIL-53(Fe) to expedite the conversion of H<sub>2</sub>O<sub>2</sub> into hydroxyl radicals, thereby facilitating the oxidation of o-phenylenediamine and terephthalic acid bridging ligand. The sensor showcased exceptional sensitivity in detecting ascorbic acid within a linear range of 0.3-100 µM, boasting an impressive limit of detection at 0.15 µM. Furthermore, through the utilization of color extraction RGB values captured by smartphones, accurate detection of ascorbic acid was achieved with a detection limit of 0.4 µM. Real fruit samples exhibited robust spiked recovery rates ranging from 91 to 119%, accompanied by relative standard deviations ≤ 4.7%. The MIL-53(Fe) nanozyme-based smartphone-assisted ratiometric fluorescence sensor offers an ascorbic acid fluorescence detection device that is visible, accurate, sensitive, and reasonably priced.</p>\",\"PeriodicalId\":15800,\"journal\":{\"name\":\"Journal of Fluorescence\",\"volume\":\" \",\"pages\":\"4911-4920\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluorescence\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s10895-024-03899-z\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-024-03899-z","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Metal-Organic Framework Based on Ratiometric dual-Fluorescent Sensor Using for Accurate Quantification and on-Site Visual Detection of Ascorbic Acid.
Ascorbic acid is very important to the metabolic process of the body, but excessive intake can lead to diarrhea, kidney calculi and stomach cramps. However, complicated production procedures and harsh experimental settings limit many detection methods, and a simpler and more accurate measurement method is needed. In this study, a smartphone-assisted ratiometric fluorescence sensor was developed for the portable analysis of ascorbic acid. Leveraging the catalytic properties of MIL-53(Fe) to expedite the conversion of H2O2 into hydroxyl radicals, thereby facilitating the oxidation of o-phenylenediamine and terephthalic acid bridging ligand. The sensor showcased exceptional sensitivity in detecting ascorbic acid within a linear range of 0.3-100 µM, boasting an impressive limit of detection at 0.15 µM. Furthermore, through the utilization of color extraction RGB values captured by smartphones, accurate detection of ascorbic acid was achieved with a detection limit of 0.4 µM. Real fruit samples exhibited robust spiked recovery rates ranging from 91 to 119%, accompanied by relative standard deviations ≤ 4.7%. The MIL-53(Fe) nanozyme-based smartphone-assisted ratiometric fluorescence sensor offers an ascorbic acid fluorescence detection device that is visible, accurate, sensitive, and reasonably priced.
期刊介绍:
Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.