Gyeong Ryul Ryu, Dongryeoul Bae, Shahab Uddin, Mohammed Sohel Meah, Waqas Ahmad, Kris John Silvano, Gyeongik Ahn, Joon-Yung Cha, Esder Lee, Ki-Ho Song, Woe-Yeon Kim, Min Gab Kim
{"title":"转录因子 MEOX 对分泌胰高血糖素样肽 1 的细胞中胰岛素基因表达的影响","authors":"Gyeong Ryul Ryu, Dongryeoul Bae, Shahab Uddin, Mohammed Sohel Meah, Waqas Ahmad, Kris John Silvano, Gyeongik Ahn, Joon-Yung Cha, Esder Lee, Ki-Ho Song, Woe-Yeon Kim, Min Gab Kim","doi":"10.1007/s11626-024-00964-6","DOIUrl":null,"url":null,"abstract":"<p><p>Currently, the supply of beta cells for islet transplantation in the treatment of type 1 diabetes is limited. Enteroendocrine cells (EECs) are believed to have high potential as stem cells because they share significant developmental similarities with beta cells. In a previous study, we derived EEC cells that secrete individual gut hormones from STC-1 cells. This study aimed to examine intestinal hormone secretion and expression, investigate the expression of developmental-related transcription factors, and analyze the effect of MEOX on insulin gene expression in isolated EECs. The expression and secretion of enteroendocrine hormones were evaluated in L6 and K34 cells from STC-1 cells. Expression patterns of beta cell- and development-related genes in L6 and K34 cells were compared with beta cells. Comparisons of the MEOX-induced expression of Ins in beta cells and GLP-1-secreting cells were investigated. Both L6 and K34 cells predominantly expressed Glp1 and Gip, respectively. The secretion pattern of GLP-1 in L6 cells was similar to that of GLUTag cells. Previous microarray analysis confirmed MEOX as developmentally relevant transcription factors expressed in beta cells. Overexpression of MEOX showed a tendency to increase Ins expression in L6 and GLUTag cells, but not in MIN6 cells. However, when PDX1 and MEOX were co-expressed in GLUTag cells, insulin expression was suppressed, similar to that observed in MIN6 cells. These findings suggest a potential role for MEOX in regulating the expression of the Ins gene in both beta cells and GLP-1-secreting cells. Further studies are warranted to elucidate the underlying mechanism.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of transcription factor MEOX on insulin gene expression in glucagon-like peptide 1-secreting cells.\",\"authors\":\"Gyeong Ryul Ryu, Dongryeoul Bae, Shahab Uddin, Mohammed Sohel Meah, Waqas Ahmad, Kris John Silvano, Gyeongik Ahn, Joon-Yung Cha, Esder Lee, Ki-Ho Song, Woe-Yeon Kim, Min Gab Kim\",\"doi\":\"10.1007/s11626-024-00964-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Currently, the supply of beta cells for islet transplantation in the treatment of type 1 diabetes is limited. Enteroendocrine cells (EECs) are believed to have high potential as stem cells because they share significant developmental similarities with beta cells. In a previous study, we derived EEC cells that secrete individual gut hormones from STC-1 cells. This study aimed to examine intestinal hormone secretion and expression, investigate the expression of developmental-related transcription factors, and analyze the effect of MEOX on insulin gene expression in isolated EECs. The expression and secretion of enteroendocrine hormones were evaluated in L6 and K34 cells from STC-1 cells. Expression patterns of beta cell- and development-related genes in L6 and K34 cells were compared with beta cells. Comparisons of the MEOX-induced expression of Ins in beta cells and GLP-1-secreting cells were investigated. Both L6 and K34 cells predominantly expressed Glp1 and Gip, respectively. The secretion pattern of GLP-1 in L6 cells was similar to that of GLUTag cells. Previous microarray analysis confirmed MEOX as developmentally relevant transcription factors expressed in beta cells. Overexpression of MEOX showed a tendency to increase Ins expression in L6 and GLUTag cells, but not in MIN6 cells. However, when PDX1 and MEOX were co-expressed in GLUTag cells, insulin expression was suppressed, similar to that observed in MIN6 cells. These findings suggest a potential role for MEOX in regulating the expression of the Ins gene in both beta cells and GLP-1-secreting cells. Further studies are warranted to elucidate the underlying mechanism.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11626-024-00964-6\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11626-024-00964-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Effect of transcription factor MEOX on insulin gene expression in glucagon-like peptide 1-secreting cells.
Currently, the supply of beta cells for islet transplantation in the treatment of type 1 diabetes is limited. Enteroendocrine cells (EECs) are believed to have high potential as stem cells because they share significant developmental similarities with beta cells. In a previous study, we derived EEC cells that secrete individual gut hormones from STC-1 cells. This study aimed to examine intestinal hormone secretion and expression, investigate the expression of developmental-related transcription factors, and analyze the effect of MEOX on insulin gene expression in isolated EECs. The expression and secretion of enteroendocrine hormones were evaluated in L6 and K34 cells from STC-1 cells. Expression patterns of beta cell- and development-related genes in L6 and K34 cells were compared with beta cells. Comparisons of the MEOX-induced expression of Ins in beta cells and GLP-1-secreting cells were investigated. Both L6 and K34 cells predominantly expressed Glp1 and Gip, respectively. The secretion pattern of GLP-1 in L6 cells was similar to that of GLUTag cells. Previous microarray analysis confirmed MEOX as developmentally relevant transcription factors expressed in beta cells. Overexpression of MEOX showed a tendency to increase Ins expression in L6 and GLUTag cells, but not in MIN6 cells. However, when PDX1 and MEOX were co-expressed in GLUTag cells, insulin expression was suppressed, similar to that observed in MIN6 cells. These findings suggest a potential role for MEOX in regulating the expression of the Ins gene in both beta cells and GLP-1-secreting cells. Further studies are warranted to elucidate the underlying mechanism.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.