Qi Meng, Sanjali Mitra, Irish Del Rosario, Michael Jerrett, Carla Janzen, Sherin U Devaskar, Beate Ritz
{"title":"洛杉矶孕妇尿液中的多环芳烃代谢物及其与氧化应激的关系。","authors":"Qi Meng, Sanjali Mitra, Irish Del Rosario, Michael Jerrett, Carla Janzen, Sherin U Devaskar, Beate Ritz","doi":"10.1186/s12940-024-01107-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Polycyclic aromatic hydrocarbons (PAHs) have been linked to adverse birth outcomes that have been reported to be induced by oxidative stress, but few epidemiological studies to date have evaluated associations between urinary PAH metabolites and oxidative stress biomarkers in pregnancy and identified critical periods for these outcomes and PAH exposures in pregnancy.</p><p><strong>Methods: </strong>A cohort of pregnant women was recruited early in pregnancy from antenatal clinics at the University of California Los Angeles during 2016-2019. We collected urine samples up to three times during pregnancy in a total of 159 women enrolled in the cohort. A total of 7 PAH metabolites and 2 oxidative stress biomarkers [malondialdehyde (MDA), 8-hydroxy-2'-deoxyguanosine (8-OHdG)] were measured in all available urine samples. Using multiple linear regression models, we estimated the percentage change (%) and 95% confidence interval (CI) in 8-OHdG and MDA measured at each sample collection time per doubling of PAH metabolite concentrations. Furthermore, we used linear mixed models with a random intercept for participant to estimate the associations between PAH metabolite and oxidative stress biomarker concentrations across multiple time points in pregnancy.</p><p><strong>Results: </strong>Most PAH metabolites were positively associated with both urinary oxidative stress biomarkers, MDA and 8-OHdG, with stronger associations in early and late pregnancy. A doubling of each urinary PAH metabolite concentration increased MDA concentrations by 5.8-41.1% and 8-OHdG concentrations by 13.8-49.7%. Linear mixed model results were consistent with those from linear regression models for each gestational sampling period.</p><p><strong>Conclusion: </strong>Urinary PAH metabolites are associated with increases in oxidative stress biomarkers during pregnancy, especially in early and late pregnancy.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11321171/pdf/","citationCount":"0","resultStr":"{\"title\":\"Urinary polycyclic aromatic hydrocarbon metabolites and their association with oxidative stress among pregnant women in Los Angeles.\",\"authors\":\"Qi Meng, Sanjali Mitra, Irish Del Rosario, Michael Jerrett, Carla Janzen, Sherin U Devaskar, Beate Ritz\",\"doi\":\"10.1186/s12940-024-01107-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Polycyclic aromatic hydrocarbons (PAHs) have been linked to adverse birth outcomes that have been reported to be induced by oxidative stress, but few epidemiological studies to date have evaluated associations between urinary PAH metabolites and oxidative stress biomarkers in pregnancy and identified critical periods for these outcomes and PAH exposures in pregnancy.</p><p><strong>Methods: </strong>A cohort of pregnant women was recruited early in pregnancy from antenatal clinics at the University of California Los Angeles during 2016-2019. We collected urine samples up to three times during pregnancy in a total of 159 women enrolled in the cohort. A total of 7 PAH metabolites and 2 oxidative stress biomarkers [malondialdehyde (MDA), 8-hydroxy-2'-deoxyguanosine (8-OHdG)] were measured in all available urine samples. Using multiple linear regression models, we estimated the percentage change (%) and 95% confidence interval (CI) in 8-OHdG and MDA measured at each sample collection time per doubling of PAH metabolite concentrations. Furthermore, we used linear mixed models with a random intercept for participant to estimate the associations between PAH metabolite and oxidative stress biomarker concentrations across multiple time points in pregnancy.</p><p><strong>Results: </strong>Most PAH metabolites were positively associated with both urinary oxidative stress biomarkers, MDA and 8-OHdG, with stronger associations in early and late pregnancy. A doubling of each urinary PAH metabolite concentration increased MDA concentrations by 5.8-41.1% and 8-OHdG concentrations by 13.8-49.7%. Linear mixed model results were consistent with those from linear regression models for each gestational sampling period.</p><p><strong>Conclusion: </strong>Urinary PAH metabolites are associated with increases in oxidative stress biomarkers during pregnancy, especially in early and late pregnancy.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11321171/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1186/s12940-024-01107-w\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1186/s12940-024-01107-w","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Urinary polycyclic aromatic hydrocarbon metabolites and their association with oxidative stress among pregnant women in Los Angeles.
Background: Polycyclic aromatic hydrocarbons (PAHs) have been linked to adverse birth outcomes that have been reported to be induced by oxidative stress, but few epidemiological studies to date have evaluated associations between urinary PAH metabolites and oxidative stress biomarkers in pregnancy and identified critical periods for these outcomes and PAH exposures in pregnancy.
Methods: A cohort of pregnant women was recruited early in pregnancy from antenatal clinics at the University of California Los Angeles during 2016-2019. We collected urine samples up to three times during pregnancy in a total of 159 women enrolled in the cohort. A total of 7 PAH metabolites and 2 oxidative stress biomarkers [malondialdehyde (MDA), 8-hydroxy-2'-deoxyguanosine (8-OHdG)] were measured in all available urine samples. Using multiple linear regression models, we estimated the percentage change (%) and 95% confidence interval (CI) in 8-OHdG and MDA measured at each sample collection time per doubling of PAH metabolite concentrations. Furthermore, we used linear mixed models with a random intercept for participant to estimate the associations between PAH metabolite and oxidative stress biomarker concentrations across multiple time points in pregnancy.
Results: Most PAH metabolites were positively associated with both urinary oxidative stress biomarkers, MDA and 8-OHdG, with stronger associations in early and late pregnancy. A doubling of each urinary PAH metabolite concentration increased MDA concentrations by 5.8-41.1% and 8-OHdG concentrations by 13.8-49.7%. Linear mixed model results were consistent with those from linear regression models for each gestational sampling period.
Conclusion: Urinary PAH metabolites are associated with increases in oxidative stress biomarkers during pregnancy, especially in early and late pregnancy.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.