Wencheng Wang , Yang Yang , Xiaobao Yang , Vikash V. Gayah , Yunpeng Wang , Jinjun Tang , Zhenzhou Yuan
{"title":"考虑到时空效应的负二叉林德利方法,用于模拟零点过多的交通事故频率。","authors":"Wencheng Wang , Yang Yang , Xiaobao Yang , Vikash V. Gayah , Yunpeng Wang , Jinjun Tang , Zhenzhou Yuan","doi":"10.1016/j.aap.2024.107741","DOIUrl":null,"url":null,"abstract":"<div><p>Statistical analysis of traffic crash frequency is significant for figuring out the distribution pattern of crashes, predicting the development trend of crashes, formulating traffic crash prevention measures, and improving traffic safety planning systems. In recent years, the theory and practice for traffic safety management have shown that road crash data have characteristics such as spatial correlation, temporal correlation, and excess zeros. If these characteristics are ignored in the modeling process, it may seriously affect the fitting performance and prediction accuracy of traffic crash frequency models and even lead to incorrect conclusions. In this research, traffic crash data from rural two-way two-lane from four counties in Pennsylvania, USA was modeled considering the spatiotemporal effects of crashes. First, a negative binomial Lindley spatiotemporal effect model of crash frequency was constructed at the micro level; Simultaneously, the characteristics and problems of excess zeros and potential heterogeneity of the crash data were resolved; Finally, the effects of road characteristics on crash frequency were analyzed. The results indicate a significant spatial correlation between the crash frequency of adjacent road sections. Compared with the negative binomial model, the negative binomial Lindley model can better handle the excess zeros characteristics in traffic crash data. The model that considers both spatial correlation and temporal conditional autoregressive effects has the best fit for the observed data. In addition, for road sections that allow passing and have a speed limitation of not less than 50 miles per hour, the crash frequency corresponding to these sections is lower due to their good visibility and road conditions. The increase in average turning angle and intersection density on the horizontal curve of the road section corresponds to an increase in crash frequency.</p></div>","PeriodicalId":6926,"journal":{"name":"Accident; analysis and prevention","volume":"207 ","pages":"Article 107741"},"PeriodicalIF":5.7000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A negative binomial Lindley approach considering spatiotemporal effects for modeling traffic crash frequency with excess zeros\",\"authors\":\"Wencheng Wang , Yang Yang , Xiaobao Yang , Vikash V. Gayah , Yunpeng Wang , Jinjun Tang , Zhenzhou Yuan\",\"doi\":\"10.1016/j.aap.2024.107741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Statistical analysis of traffic crash frequency is significant for figuring out the distribution pattern of crashes, predicting the development trend of crashes, formulating traffic crash prevention measures, and improving traffic safety planning systems. In recent years, the theory and practice for traffic safety management have shown that road crash data have characteristics such as spatial correlation, temporal correlation, and excess zeros. If these characteristics are ignored in the modeling process, it may seriously affect the fitting performance and prediction accuracy of traffic crash frequency models and even lead to incorrect conclusions. In this research, traffic crash data from rural two-way two-lane from four counties in Pennsylvania, USA was modeled considering the spatiotemporal effects of crashes. First, a negative binomial Lindley spatiotemporal effect model of crash frequency was constructed at the micro level; Simultaneously, the characteristics and problems of excess zeros and potential heterogeneity of the crash data were resolved; Finally, the effects of road characteristics on crash frequency were analyzed. The results indicate a significant spatial correlation between the crash frequency of adjacent road sections. Compared with the negative binomial model, the negative binomial Lindley model can better handle the excess zeros characteristics in traffic crash data. The model that considers both spatial correlation and temporal conditional autoregressive effects has the best fit for the observed data. In addition, for road sections that allow passing and have a speed limitation of not less than 50 miles per hour, the crash frequency corresponding to these sections is lower due to their good visibility and road conditions. The increase in average turning angle and intersection density on the horizontal curve of the road section corresponds to an increase in crash frequency.</p></div>\",\"PeriodicalId\":6926,\"journal\":{\"name\":\"Accident; analysis and prevention\",\"volume\":\"207 \",\"pages\":\"Article 107741\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accident; analysis and prevention\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001457524002860\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ERGONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accident; analysis and prevention","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001457524002860","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ERGONOMICS","Score":null,"Total":0}
A negative binomial Lindley approach considering spatiotemporal effects for modeling traffic crash frequency with excess zeros
Statistical analysis of traffic crash frequency is significant for figuring out the distribution pattern of crashes, predicting the development trend of crashes, formulating traffic crash prevention measures, and improving traffic safety planning systems. In recent years, the theory and practice for traffic safety management have shown that road crash data have characteristics such as spatial correlation, temporal correlation, and excess zeros. If these characteristics are ignored in the modeling process, it may seriously affect the fitting performance and prediction accuracy of traffic crash frequency models and even lead to incorrect conclusions. In this research, traffic crash data from rural two-way two-lane from four counties in Pennsylvania, USA was modeled considering the spatiotemporal effects of crashes. First, a negative binomial Lindley spatiotemporal effect model of crash frequency was constructed at the micro level; Simultaneously, the characteristics and problems of excess zeros and potential heterogeneity of the crash data were resolved; Finally, the effects of road characteristics on crash frequency were analyzed. The results indicate a significant spatial correlation between the crash frequency of adjacent road sections. Compared with the negative binomial model, the negative binomial Lindley model can better handle the excess zeros characteristics in traffic crash data. The model that considers both spatial correlation and temporal conditional autoregressive effects has the best fit for the observed data. In addition, for road sections that allow passing and have a speed limitation of not less than 50 miles per hour, the crash frequency corresponding to these sections is lower due to their good visibility and road conditions. The increase in average turning angle and intersection density on the horizontal curve of the road section corresponds to an increase in crash frequency.
期刊介绍:
Accident Analysis & Prevention provides wide coverage of the general areas relating to accidental injury and damage, including the pre-injury and immediate post-injury phases. Published papers deal with medical, legal, economic, educational, behavioral, theoretical or empirical aspects of transportation accidents, as well as with accidents at other sites. Selected topics within the scope of the Journal may include: studies of human, environmental and vehicular factors influencing the occurrence, type and severity of accidents and injury; the design, implementation and evaluation of countermeasures; biomechanics of impact and human tolerance limits to injury; modelling and statistical analysis of accident data; policy, planning and decision-making in safety.