热液碳化中的醋酸纤维素:实现残余生物塑料价值化的绿色途径。

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-01-14 Epub Date: 2024-10-18 DOI:10.1002/cssc.202401163
Giulia Ischia, Filippo Marchelli, Nicola Bazzanella, Riccardo Ceccato, Marco Calvi, Graziano Guella, Claudio Gioia, Luca Fiori
{"title":"热液碳化中的醋酸纤维素:实现残余生物塑料价值化的绿色途径。","authors":"Giulia Ischia, Filippo Marchelli, Nicola Bazzanella, Riccardo Ceccato, Marco Calvi, Graziano Guella, Claudio Gioia, Luca Fiori","doi":"10.1002/cssc.202401163","DOIUrl":null,"url":null,"abstract":"<p><p>Bioplastics possess the potential to foster a sustainable circular plastic economy, but their end-of-life is still challenging. To sustainably overcome this problem, this work proposes the hydrothermal carbonization (HTC) of residual bioplastics as an alternative green path. The focus is on cellulose acetate - a bioplastic used for eyewear, cigarette filters and other applications - showing the proof of concept and the chemistry behind the conversion, including a reaction kinetics model. HTC of pure and commercial cellulose acetates was assessed under various operating conditions (180-250 °C and 0-6 h), with analyses on the solid and liquid products. Results show the peculiar behavior of these substrates under HTC. At 190-210 °C, the materials almost completely dissolve into the liquid phase, forming 5-hydroxymethylfurfural and organic acids. Above 220 °C, intermediates repolymerize into carbon-rich microspheres (secondary char), achieving solid yields up to 23 %, while itaconic and citric acid form. A comparison with pure substrates and additives demonstrates that the amounts of acetyl groups and derivatives of the plasticizers are crucial in catalyzing HTC reactions, creating a unique environment capable of leading to a total rearrangement of cellulose acetates. HTC can thus represent a cornerstone in establishing a biorefinery for residual cellulose acetate.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202401163"},"PeriodicalIF":7.5000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11739857/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cellulose Acetates in Hydrothermal Carbonization: A Green Pathway to Valorize Residual Bioplastics.\",\"authors\":\"Giulia Ischia, Filippo Marchelli, Nicola Bazzanella, Riccardo Ceccato, Marco Calvi, Graziano Guella, Claudio Gioia, Luca Fiori\",\"doi\":\"10.1002/cssc.202401163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bioplastics possess the potential to foster a sustainable circular plastic economy, but their end-of-life is still challenging. To sustainably overcome this problem, this work proposes the hydrothermal carbonization (HTC) of residual bioplastics as an alternative green path. The focus is on cellulose acetate - a bioplastic used for eyewear, cigarette filters and other applications - showing the proof of concept and the chemistry behind the conversion, including a reaction kinetics model. HTC of pure and commercial cellulose acetates was assessed under various operating conditions (180-250 °C and 0-6 h), with analyses on the solid and liquid products. Results show the peculiar behavior of these substrates under HTC. At 190-210 °C, the materials almost completely dissolve into the liquid phase, forming 5-hydroxymethylfurfural and organic acids. Above 220 °C, intermediates repolymerize into carbon-rich microspheres (secondary char), achieving solid yields up to 23 %, while itaconic and citric acid form. A comparison with pure substrates and additives demonstrates that the amounts of acetyl groups and derivatives of the plasticizers are crucial in catalyzing HTC reactions, creating a unique environment capable of leading to a total rearrangement of cellulose acetates. HTC can thus represent a cornerstone in establishing a biorefinery for residual cellulose acetate.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202401163\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11739857/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202401163\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202401163","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

生物塑料具有促进可持续循环塑料经济的潜力,但其生命周期的终结仍具有挑战性。为了可持续地解决这一问题,本研究提出了对残留生物塑料进行水热碳化(HTC)的方法,作为另一条绿色途径。重点是醋酸纤维素--一种用于眼镜、香烟过滤嘴和其他应用的生物塑料--展示了概念验证和转化背后的化学原理,包括反应动力学模型。在不同的操作条件下(180-250 °C,0-6 小时),对纯醋酸纤维素和商用醋酸纤维素的 HTC 进行了评估,并对固体和液体产物进行了分析。结果显示了这些基质在 HTC 下的特殊行为。在 190-210 °C 时,这些材料几乎完全溶解到液相中,形成 5- 羟甲基糠醛和有机酸。温度超过 220 ℃ 时,中间产物重新聚合成富碳微球(二次炭),固体产量高达 23%,同时形成衣康酸和柠檬酸。与纯基质和添加剂的比较表明,乙酰基和增塑剂衍生物的数量对催化 HTC 反应至关重要,它们创造了一种独特的环境,能够导致纤维素乙酸酯的完全重排。因此,HTC 可以作为建立残余醋酸纤维素生物精炼厂的基石。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cellulose Acetates in Hydrothermal Carbonization: A Green Pathway to Valorize Residual Bioplastics.

Bioplastics possess the potential to foster a sustainable circular plastic economy, but their end-of-life is still challenging. To sustainably overcome this problem, this work proposes the hydrothermal carbonization (HTC) of residual bioplastics as an alternative green path. The focus is on cellulose acetate - a bioplastic used for eyewear, cigarette filters and other applications - showing the proof of concept and the chemistry behind the conversion, including a reaction kinetics model. HTC of pure and commercial cellulose acetates was assessed under various operating conditions (180-250 °C and 0-6 h), with analyses on the solid and liquid products. Results show the peculiar behavior of these substrates under HTC. At 190-210 °C, the materials almost completely dissolve into the liquid phase, forming 5-hydroxymethylfurfural and organic acids. Above 220 °C, intermediates repolymerize into carbon-rich microspheres (secondary char), achieving solid yields up to 23 %, while itaconic and citric acid form. A comparison with pure substrates and additives demonstrates that the amounts of acetyl groups and derivatives of the plasticizers are crucial in catalyzing HTC reactions, creating a unique environment capable of leading to a total rearrangement of cellulose acetates. HTC can thus represent a cornerstone in establishing a biorefinery for residual cellulose acetate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信