利用正交氧化还原辅助因子按需改变氧化还原反应平衡

IF 12.9 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Derek Aspacio, Yulai Zhang, Youtian Cui, Emma Luu, Edward King, William B. Black, Sean Perea, Qiang Zhu, Yongxian Wu, Ray Luo, Justin B. Siegel, Han Li
{"title":"利用正交氧化还原辅助因子按需改变氧化还原反应平衡","authors":"Derek Aspacio, Yulai Zhang, Youtian Cui, Emma Luu, Edward King, William B. Black, Sean Perea, Qiang Zhu, Yongxian Wu, Ray Luo, Justin B. Siegel, Han Li","doi":"10.1038/s41589-024-01702-5","DOIUrl":null,"url":null,"abstract":"<p>Nature’s two redox cofactors, nicotinamide adenine dinucleotide (NAD<sup>+</sup>) and nicotinamide adenine dinucleotide phosphate (NADP<sup>+</sup>), are held at different reduction potentials, driving catabolism and anabolism in opposite directions. In biomanufacturing, there is a need to flexibly control redox reaction direction decoupled from catabolism and anabolism. We established nicotinamide mononucleotide (NMN<sup>+</sup>) as a noncanonical cofactor orthogonal to NAD(P)<sup>+</sup>. Here we present the development of Nox Ortho, a reduced NMN<sup>+</sup> (NMNH)-specific oxidase, that completes the toolkit to modulate NMNH:NMN<sup>+</sup> ratio together with an NMN<sup>+</sup>-specific glucose dehydrogenase (GDH Ortho). The design principle discovered from Nox Ortho engineering and modeling is facilely translated onto six different enzymes to create NMN(H)-orthogonal biocatalysts with a consistent ~10<sup>3</sup>–10<sup>6</sup>-fold cofactor specificity switch from NAD(P)<sup>+</sup> to NMN<sup>+</sup>. We assemble these enzymes to produce stereo-pure 2,3-butanediol in cell-free systems and in <i>Escherichia coli</i>, enabled by NMN(H)’s distinct redox ratio firmly set by its designated driving forces, decoupled from both NAD(H) and NADP(H).</p><figure></figure>","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":null,"pages":null},"PeriodicalIF":12.9000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shifting redox reaction equilibria on demand using an orthogonal redox cofactor\",\"authors\":\"Derek Aspacio, Yulai Zhang, Youtian Cui, Emma Luu, Edward King, William B. Black, Sean Perea, Qiang Zhu, Yongxian Wu, Ray Luo, Justin B. Siegel, Han Li\",\"doi\":\"10.1038/s41589-024-01702-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nature’s two redox cofactors, nicotinamide adenine dinucleotide (NAD<sup>+</sup>) and nicotinamide adenine dinucleotide phosphate (NADP<sup>+</sup>), are held at different reduction potentials, driving catabolism and anabolism in opposite directions. In biomanufacturing, there is a need to flexibly control redox reaction direction decoupled from catabolism and anabolism. We established nicotinamide mononucleotide (NMN<sup>+</sup>) as a noncanonical cofactor orthogonal to NAD(P)<sup>+</sup>. Here we present the development of Nox Ortho, a reduced NMN<sup>+</sup> (NMNH)-specific oxidase, that completes the toolkit to modulate NMNH:NMN<sup>+</sup> ratio together with an NMN<sup>+</sup>-specific glucose dehydrogenase (GDH Ortho). The design principle discovered from Nox Ortho engineering and modeling is facilely translated onto six different enzymes to create NMN(H)-orthogonal biocatalysts with a consistent ~10<sup>3</sup>–10<sup>6</sup>-fold cofactor specificity switch from NAD(P)<sup>+</sup> to NMN<sup>+</sup>. We assemble these enzymes to produce stereo-pure 2,3-butanediol in cell-free systems and in <i>Escherichia coli</i>, enabled by NMN(H)’s distinct redox ratio firmly set by its designated driving forces, decoupled from both NAD(H) and NADP(H).</p><figure></figure>\",\"PeriodicalId\":18832,\"journal\":{\"name\":\"Nature chemical biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.9000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature chemical biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41589-024-01702-5\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41589-024-01702-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

自然界的两种氧化还原辅助因子--烟酰胺腺嘌呤二核苷酸(NAD+)和烟酰胺腺嘌呤二核苷酸磷酸酯(NADP+)处于不同的还原电位,推动分解代谢和合成代谢向相反的方向进行。在生物制造过程中,需要灵活控制氧化还原反应的方向,使其与分解代谢和合成代谢脱钩。我们将烟酰胺单核苷酸(NMN+)确立为与 NAD(P)+ 正交的非经典辅助因子。在此,我们介绍了还原型 NMN+(NMNH)特异性氧化酶 Nox Ortho 的开发情况,它与 NMN+特异性葡萄糖脱氢酶(GDH Ortho)一起完善了调节 NMNH:NMN+ 比率的工具包。从 Nox Ortho 工程和建模中发现的设计原理很容易地转化到六种不同的酶上,从而创造出 NMN(H)-orthogonal 生物催化剂,其辅因子特异性从 NAD(P)+ 到 NMN+ 的转换一致~103-106 倍。我们组装了这些酶,在无细胞系统和大肠杆菌中生产立体纯的 2,3-丁二醇,NMN(H) 的独特氧化还原比率由其指定的驱动力牢固设定,与 NAD(H) 和 NADP(H) 脱钩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Shifting redox reaction equilibria on demand using an orthogonal redox cofactor

Shifting redox reaction equilibria on demand using an orthogonal redox cofactor

Nature’s two redox cofactors, nicotinamide adenine dinucleotide (NAD+) and nicotinamide adenine dinucleotide phosphate (NADP+), are held at different reduction potentials, driving catabolism and anabolism in opposite directions. In biomanufacturing, there is a need to flexibly control redox reaction direction decoupled from catabolism and anabolism. We established nicotinamide mononucleotide (NMN+) as a noncanonical cofactor orthogonal to NAD(P)+. Here we present the development of Nox Ortho, a reduced NMN+ (NMNH)-specific oxidase, that completes the toolkit to modulate NMNH:NMN+ ratio together with an NMN+-specific glucose dehydrogenase (GDH Ortho). The design principle discovered from Nox Ortho engineering and modeling is facilely translated onto six different enzymes to create NMN(H)-orthogonal biocatalysts with a consistent ~103–106-fold cofactor specificity switch from NAD(P)+ to NMN+. We assemble these enzymes to produce stereo-pure 2,3-butanediol in cell-free systems and in Escherichia coli, enabled by NMN(H)’s distinct redox ratio firmly set by its designated driving forces, decoupled from both NAD(H) and NADP(H).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature chemical biology
Nature chemical biology 生物-生化与分子生物学
CiteScore
23.90
自引率
1.40%
发文量
238
审稿时长
12 months
期刊介绍: Nature Chemical Biology stands as an esteemed international monthly journal, offering a prominent platform for the chemical biology community to showcase top-tier original research and commentary. Operating at the crossroads of chemistry, biology, and related disciplines, chemical biology utilizes scientific ideas and approaches to comprehend and manipulate biological systems with molecular precision. The journal embraces contributions from the growing community of chemical biologists, encompassing insights from chemists applying principles and tools to biological inquiries and biologists striving to comprehend and control molecular-level biological processes. We prioritize studies unveiling significant conceptual or practical advancements in areas where chemistry and biology intersect, emphasizing basic research, especially those reporting novel chemical or biological tools and offering profound molecular-level insights into underlying biological mechanisms. Nature Chemical Biology also welcomes manuscripts describing applied molecular studies at the chemistry-biology interface due to the broad utility of chemical biology approaches in manipulating or engineering biological systems. Irrespective of scientific focus, we actively seek submissions that creatively blend chemistry and biology, particularly those providing substantial conceptual or methodological breakthroughs with the potential to open innovative research avenues. The journal maintains a robust and impartial review process, emphasizing thorough chemical and biological characterization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信