可变量子相位估计算法

IF 5.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Davide Castaldo, Soran Jahangiri, Agostino Migliore, Juan Miguel Arrazola and Stefano Corni
{"title":"可变量子相位估计算法","authors":"Davide Castaldo, Soran Jahangiri, Agostino Migliore, Juan Miguel Arrazola and Stefano Corni","doi":"10.1088/2058-9565/ad69bc","DOIUrl":null,"url":null,"abstract":"The simulation of electronic properties is a pivotal issue in modern electronic structure theory, driving significant efforts over the past decades to develop protocols for computing energy derivatives. In this work, we address this problem by developing a strategy to integrate the quantum phase estimation algorithm within a fully differentiable framework. This is accomplished by devising a smooth estimator able to tackle arbitrary initial states. We provide analytical expressions to characterize the statistics and algorithmic cost of this estimator. Furthermore, we provide numerical evidence that the estimation accuracy is retained when an arbitrary state is considered and that it exceeds the one of standard majority rule. We explicitly use this procedure to estimate chemically relevant quantities, demonstrating our approach through ground-state and triplet excited state geometry optimization with simulations involving up to 19 qubits. This work paves the way for new quantum algorithms that combine interference methods and quantum differentiable programming.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A differentiable quantum phase estimation algorithm\",\"authors\":\"Davide Castaldo, Soran Jahangiri, Agostino Migliore, Juan Miguel Arrazola and Stefano Corni\",\"doi\":\"10.1088/2058-9565/ad69bc\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The simulation of electronic properties is a pivotal issue in modern electronic structure theory, driving significant efforts over the past decades to develop protocols for computing energy derivatives. In this work, we address this problem by developing a strategy to integrate the quantum phase estimation algorithm within a fully differentiable framework. This is accomplished by devising a smooth estimator able to tackle arbitrary initial states. We provide analytical expressions to characterize the statistics and algorithmic cost of this estimator. Furthermore, we provide numerical evidence that the estimation accuracy is retained when an arbitrary state is considered and that it exceeds the one of standard majority rule. We explicitly use this procedure to estimate chemically relevant quantities, demonstrating our approach through ground-state and triplet excited state geometry optimization with simulations involving up to 19 qubits. This work paves the way for new quantum algorithms that combine interference methods and quantum differentiable programming.\",\"PeriodicalId\":20821,\"journal\":{\"name\":\"Quantum Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-9565/ad69bc\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/ad69bc","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电子特性的模拟是现代电子结构理论中的一个关键问题,在过去几十年中,我们一直致力于开发计算能量导数的协议。在这项工作中,我们通过开发一种策略,将量子相位估计算法整合到一个完全可微分的框架中,从而解决了这一问题。为此,我们设计了一种能够处理任意初始状态的平滑估计器。我们提供了分析表达式来描述这种估计器的统计和算法成本。此外,我们还提供了数值证据,证明在考虑任意状态时,估计精度仍能保持,并且超过了标准多数规则的精度。我们明确地使用这一程序来估算化学相关量,通过基态和三重激发态几何优化以及涉及多达 19 个量子比特的模拟来证明我们的方法。这项工作为结合干涉方法和量子可微编程的新量子算法铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A differentiable quantum phase estimation algorithm
The simulation of electronic properties is a pivotal issue in modern electronic structure theory, driving significant efforts over the past decades to develop protocols for computing energy derivatives. In this work, we address this problem by developing a strategy to integrate the quantum phase estimation algorithm within a fully differentiable framework. This is accomplished by devising a smooth estimator able to tackle arbitrary initial states. We provide analytical expressions to characterize the statistics and algorithmic cost of this estimator. Furthermore, we provide numerical evidence that the estimation accuracy is retained when an arbitrary state is considered and that it exceeds the one of standard majority rule. We explicitly use this procedure to estimate chemically relevant quantities, demonstrating our approach through ground-state and triplet excited state geometry optimization with simulations involving up to 19 qubits. This work paves the way for new quantum algorithms that combine interference methods and quantum differentiable programming.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Science and Technology
Quantum Science and Technology Materials Science-Materials Science (miscellaneous)
CiteScore
11.20
自引率
3.00%
发文量
133
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信