地面/非地面集成网络中无人机-BS 机队合作轨迹设计的多代理强化学习

IF 0.3 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Linh T. Hoang;Chuyen T. Nguyen;Hoang D. Le;Anh T. Pham
{"title":"地面/非地面集成网络中无人机-BS 机队合作轨迹设计的多代理强化学习","authors":"Linh T. Hoang;Chuyen T. Nguyen;Hoang D. Le;Anh T. Pham","doi":"10.23919/comex.2024XBL0084","DOIUrl":null,"url":null,"abstract":"Aerial base stations (ABSs) have been envisioned as a promising technology toward ubiquitous coverage and seamless high-rate connectivity in sixth-generation (6G) wireless networks. With the inherent mobility but limited communication range, the placement of ABSs should adapt to the time-varying network conditions, e.g., the user distribution and wireless channel state. This letter investigates the cooperative trajectory of UAVs in an integrated terrestrial and non-terrestrial network (TNTN), where unmanned aerial vehicles (UAVs) are deployed as ABSs to supplement the terrestrial macro base station (mBS). We formulate an optimization problem to maximize the number of users with a certain minimum data rate, which is solved using multi-agent reinforcement learning (MARL). Numerical results show that the proposed design is superior to conventional approaches for the cooperative trajectory of UAVs, including K-means clustering-based and single-agent reinforcement learning (SARL)-based methods.","PeriodicalId":54101,"journal":{"name":"IEICE Communications Express","volume":"13 8","pages":"327-330"},"PeriodicalIF":0.3000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10554673","citationCount":"0","resultStr":"{\"title\":\"Multi-Agent Reinforcement Learning for Cooperative Trajectory Design of UAV-BS Fleets in Terrestrial/Non-Terrestrial Integrated Networks\",\"authors\":\"Linh T. Hoang;Chuyen T. Nguyen;Hoang D. Le;Anh T. Pham\",\"doi\":\"10.23919/comex.2024XBL0084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aerial base stations (ABSs) have been envisioned as a promising technology toward ubiquitous coverage and seamless high-rate connectivity in sixth-generation (6G) wireless networks. With the inherent mobility but limited communication range, the placement of ABSs should adapt to the time-varying network conditions, e.g., the user distribution and wireless channel state. This letter investigates the cooperative trajectory of UAVs in an integrated terrestrial and non-terrestrial network (TNTN), where unmanned aerial vehicles (UAVs) are deployed as ABSs to supplement the terrestrial macro base station (mBS). We formulate an optimization problem to maximize the number of users with a certain minimum data rate, which is solved using multi-agent reinforcement learning (MARL). Numerical results show that the proposed design is superior to conventional approaches for the cooperative trajectory of UAVs, including K-means clustering-based and single-agent reinforcement learning (SARL)-based methods.\",\"PeriodicalId\":54101,\"journal\":{\"name\":\"IEICE Communications Express\",\"volume\":\"13 8\",\"pages\":\"327-330\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10554673\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEICE Communications Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10554673/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Communications Express","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10554673/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

空中基站(ABS)被认为是第六代(6G)无线网络中实现无处不在的覆盖和无缝高速率连接的一项前景广阔的技术。空中基站具有固有的移动性,但通信距离有限,因此其位置应适应网络条件的时变,如用户分布和无线信道状态。本文研究了无人机在地面和非地面综合网络(TNTN)中的合作轨迹,在该网络中,无人机(UAV)被部署为 ABS,作为地面宏基站(mBS)的补充。我们提出了一个优化问题,即在一定的最小数据传输速率下最大化用户数量,并利用多代理强化学习(MARL)解决了这一问题。数值结果表明,所提出的设计优于无人机合作轨迹的传统方法,包括基于均值聚类的方法和基于单机强化学习(SARL)的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Agent Reinforcement Learning for Cooperative Trajectory Design of UAV-BS Fleets in Terrestrial/Non-Terrestrial Integrated Networks
Aerial base stations (ABSs) have been envisioned as a promising technology toward ubiquitous coverage and seamless high-rate connectivity in sixth-generation (6G) wireless networks. With the inherent mobility but limited communication range, the placement of ABSs should adapt to the time-varying network conditions, e.g., the user distribution and wireless channel state. This letter investigates the cooperative trajectory of UAVs in an integrated terrestrial and non-terrestrial network (TNTN), where unmanned aerial vehicles (UAVs) are deployed as ABSs to supplement the terrestrial macro base station (mBS). We formulate an optimization problem to maximize the number of users with a certain minimum data rate, which is solved using multi-agent reinforcement learning (MARL). Numerical results show that the proposed design is superior to conventional approaches for the cooperative trajectory of UAVs, including K-means clustering-based and single-agent reinforcement learning (SARL)-based methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEICE Communications Express
IEICE Communications Express ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
33.30%
发文量
114
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信